Part 1. Introduction

1.1. Introduction

In this monograph we present the statistical theory and its application for experiments to
estimate survival probabilities (rates) of fish passing through hydroelectric dams and spillways
in the Columbia River in the northwestern United States. The application of the methods
developed here is more general, however, as it includes experiments to estimate survival of fish
as they pass over spillways or through bypass systems and several dams. Additionally, this
class of experiments includes studies on many vertebrate populations in which marked animals
in control and treatment (dosage) groups are compared. We do not concentrate on these
extensions, for they are special cases of the general methodology presented here, but we will
illustrate them with some examples. '

Fish release programs designed to estimate survival rates have been conducted on the
Columbia River for several decades. In the associated literature and reports, little statistical
formalism underlies the design or analysis of these research programs. Development of sam-
pling (i.e., statistical) models should be an intrinsic part of knowledge acquisition, opinion, and
belief formation (Hacking 1965; Kempthorne and Folks 1971).

1.1.1. Simple Example

A hypothetical example will illustrate a simple survival study and introduce the (often)
more complex experiments to be addressed later. Consider a team of fisheries biologists con-
cerned with the survival of young steelhead Salmo gairdneri as they pass through turbines in a
hydroelectric dam on a large river. As has been the practice for many years, large numbers of
hatchery-reared fish are marked and about half are released (releases = R) above the dam
into the turbine intakes (let this number be R;;) while the other half are released below the
dam in the tailrace area (let this number be R,;). The marks are different for the two groups:

= treatment and ¢ = control. The releases are made at dam 1, and some fish are recaptured
at three downstream dams (dams 2, 3, and 4). Let m,,; and m,; be the number of treatment
and control fish, respectively, recaptured at downstream dam i (i = 2, 3, 4). These data can be
represented symbolically and numerically as:



2 PART 1. INTRODUCTION

Recaptured at
Treatment  Released at
group dam 1 dam 2 dam 3 dam 4
t Rtl = 10,000 Mg = 390 Mys = 480 My = 83
c Rcl = 9,000 Moo = 412 Mes = 530 Mesg = 83.

For simplicity, we assume that once a fish is captured at one of the three downstream dams, it
is removed from the study and not rereleased. The recapture data thus come from a sample of
the marked cohorts initially released.

How can we then estimate the survival rate (S) through the turbine from data such as
these? The ratio of the two recapture rates at the first downstream dam is an estimate of the
survival rate:

(mt2/Rt1)/(mc2/Rc1) = (390/10’000)/(412/9’000) = 0.852.

Assuming passage through the turbine has no effect on downstream fish behavior, this estima-
tor is essentially unbiased but it is inefficient because it does not use all the data relevant to
estimation of the survival parameters. Likewise, the separate estimators, based only on data
from dams 3 or 4,

(ms/Ryy)/(m.s/R.1) = (480/10,000)/(530/9,000) = 0.815
and
(mt4/Rt1)/(mc4/Rc1) = (83/10,000)/(83/9’000) = 0.900 ’

are poor for the same reason. One might try to pool the data, by weighting each of these three
estimators, to get an improved estimator of survival. Equal weights might be desirable; how-
ever, one could weight the three estimates by the total number of fish captured, or by the
number of treatment or control fish captured. Other ways of pooling data are also possible.

Without a formal theory underlying this class of studies, it is impossible to proceed in a
rigorous manner. Lacking the necessary basis of a stochastic theoretical model, it is equally
difficult to estimate the theoretical precision associated with estimates of survival rate. A
proper estimator of the sampling variance is important as a measure of an estimator’s preci-
sion or repeatability. A number of assumptions must be made in studies of this type, and these
assumptions must be stated clearly because they form the basis for a model. Goodness-of-fit
tests must be derived in an effort to assess the validity of the assumptions. Finally, one must
know the degree to which an estimator of survival rate is sensitive to the partial failure of par-
ticular assumptions.
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Because intuition was of little help in deriving an estimator and its sampling variance in
the simple example, a rigorous approach is required for the more complex cases encountered
in real life. These cases include studies in which (1) fish captured at downstream dams are
released alive for potential second or third captures, (2) more than one treatment is involved
(e.g., three release groups), (3) fish are released with unique tag numbers instead of simple
batch marks, (4) fish size is used as a covariate, (5) several replicate releases (lots) are
involved, and (6) survival is estimated for several dams and reservoirs in a long reach of the
river. We attempt here to establish the analysis and inference theory for this general class of
experiments.

This class of experiments is inherently difficult to treat. Unlike more standard experi-
ments (e.g., agricultural field trials), these survival experiments allow less control by the inves-
tigators because fish are highly mobile animals whose behavior is poorly understood. Further,
the use of sampling methods to reobserve the marked animals imposes substantial complexi-
ties. Important assumptions are required, and statistical tests must be made to assess carefully
the validity of these assumptions. The fundamental concepts and analysis methods applied
here are not trivial.

1.1.2. Historical Note

As our methodological research progressed, we found much existing theory in the
scientific literature related directly to the estimation and testing of concern here. Existing
theory falls under two broad categories. The first category is band or tag recovery studies,
such as the one outlined in Section 1.1.1, where known releases of fish are followed by the
removal of recaptured fish from the population upon first capture. The theory for this class of
studies dates back to the early 1970s (Seber 1970; Robson and Youngs, unpublished report,
1971) (but see also Seber 1962); much of it was synthesized and extended by the two editions
of the handbook of Brownie et al. (1978, 1985). Second, part of the existing theory for the so-
called Jolly-Seber model (Jolly 1965; Seber 1965, 1982) was found to be relevant for the prob-
lems presented herein in which fish captured at downstream dams are released alive for possi-
ble subsequent recapture. In the context of this work, however, we cannot estimate population
size or numbers of new recruits (which is possible under the Jolly-Seber framework: e.g.,
Hightower and Gilbert 1984) because it requires data on, and additional assumptions about,
the unmarked members of the population. Brownie et al. (1985) summarized the large litera-
ture on Jolly-Seber models. Our primary focus is survival probability within the context of a
treatment. We present a series of models, hypothesis tests, and sampling protocols that allow
a treatment survival rate to be estimated and evaluated.

These two broad approaches to sampling marked populations are closely related. We
have exploited this relationship in the present work, while extending the methodology to
enable experiments on marked populations that lead to the assessment of a treatment survival
rate. Technical discussions of these relationships were given by Brownie and Robson (1983),
Brownie and Pollock (1985), and Brownie et al. (1985:170-175).
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Many persons think of the field of statistics in terms of simple ¢ and chi-square tests,
analysis of variance, regression, and other such methods. In fact, the field is far broader than is
suggested by the data analysis methods taught in beginning statistics courses. The field of
statistics is not so much a branch of mathematics as it is an area of science concerned with the
development of a practical theory of information (White et al. 1982:14). Statistics is primarily
concerned with efficient methods of collecting data and establishing rigorous foundations for
deriving efficient methods of making inductive inferences from sample data, and it is an
integral part of the scientific method.

The conclusions drawn from sample data are intended to apply beyond the specific study
or experiment. Biologists wish to make generalizations — “inductive inferences” - from a
specific study to the population that was sampled. A theorem in logic states that there is
uncertainty in inductive inference and that perfect generalizations therefore cannot be made
about a population from studying only the sample. However, the degree of uncertainty can be
measured if the experiment was performed in accordance with certain scientific principles
(Mood et al. 1974). A critical function of the science of statistics is to provide a formalism for
making inductive inferences and for measuring their degree of uncertainty (Ostle 1963).

1.1.3. Objectives

The present work is the culmination of several initial objectives. Our overall objective is
to present a comprehensive statistical theory to support survival experiments that rely on
recapture data collected after release of marked individuals. By an experiment, we explicitly
mean at least two treatment levels, i.e., releases of “treatment” and “control” groups (the indi-
viduals are marked to reflect what group they are in), with the purpose of comparing results
across treatment levels. The methodology developed here addresses both batch and unique
marks, more than one treatment, and several other extensions. A series of experimental pro-
tocols is defined and maximum-likelihood estimators of parameters are given for each situa-
tion. Sampling variances and covariances are given as measures of precision and interdepen-
dency, respectively, for parameter estimators.

A second objective deals with hypothesis tests involving various models and assumptions
about certain parameters. The interpretation of the test results allows the selection of a proper
model for a particular experiment.

In principle, the theory is not complex, but computational details are tedious. Thus, a
third objective is to demonstrate the ability of our interactive data analysis computer program
RELEASE, which allows biologists to concentrate on the interpretation of experimental
results rather than on computational matters. In addition, we wanted to produce a
comprehensive monograph giving the relevant background, theory, and application in a way
that would be useful to biologists conducting survival experiments. Our monograph illustrates
the broad applicability of the underlying theory beyond studies of fish survival and provides an
opportunity to illustrate the methods with output from program RELEASE.
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Another important objective is to illustrate the performance of the various procedures
with sample sizes and recovery rates typically encountered in practice. Therefore, Monte
Carlo studies were performed to evaluate bias, confidence interval coverage, robustness, and
power of tests. Capabilities for further Monte Carlo studies are incorporated into program
RELEASE, allowing the user to study a particular situation.

Our final objective is to outline the design and sample-size requirements for release-
recapture survival experiments. In particular, we consider the need for replication in survival
studies and provide ways to treat these data in the analysis.

1.1.4. Reader’s Guide

We believe everyone should read Part 1 because Part 1 provides background and the
notation required for understanding the parts that follow. Persons with good statistical skills
could bypass Chapter 1.2 on Statistical Concepts. The concepts in Part 1 are kept at a fairly
elementary level, with the exception of Chapter 1.5. We recommend the use of program
RELEASE as a learning tool. The data given in Chapter 1.3 are used in many places
throughout the monograph. Interpretation of the program output enhances the rate of under-
standing, especially in becoming familiar with the different models and protocols.

Chapter 2.1 in Part 2 contains difficult material. However, we urge the reader to gain
some insight into the concepts given. Chapters 2.2, 2.3, 2.4, and 2.5 are parallel in that they
cover the four major sampling protocols. Each of these four chapters contains examples to aid
in understanding the analysis theory presented; however, an understanding of Part 1 is
assumed. The material in Part 2 deals with experiments involving one treatment and one con-
trol. We urge all readers to read at least Chapters 2.1, 2.2, and 2.4. Parts 1 and 2 of this work
are written in the context of fish experiments and studies involving large hydroelectric dams.
Other parts are less specific, to allow the reader to think more generally about experimental
animals and sampling sites or occasions rather than only about fish and dams.

Part 3 is optional reading for biologists, unless their interest lies in more elaborate
experiments involving two or more treatments and single or multiple control groups. Under-
standing Parts 1 and 2 is required to understand Part 3. In contrast, statisticians may want to
scan the general theory presented in Part 3 before examining the various special cases given in
later chapters.

The subject of replication in Part 4 is essential reading for all user groups. In particular,
those considering the design of experiments should understand the need for replication. Biol-
ogists may want to postpone reading Part 5, but statisticians probably will want to consider this
material in detail.

Part 6 relates to experimental design, and anyone contemplating this problem should
find useful suggestions here. However, we caution the reader that only statistical features are
stressed in Part 6; biological aspects of these experiments are not provided.
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In Part 7, we examine some case studies in an attempt to provide insight into the gen-
erality of the methods developed here, and extend the coverage to other vertebrates. We urge
all readers to study these examples.

Part 8 is for readers who have a good understanding of the preceding material. Part 8 is
not meant to be complete; it is only a brief introduction to some of the extensions that are pos-
sible to develop.

Anyone expecting to make intensive use of computer program RELEASE should read
Part 9. RELEASE is relatively easy to use if one follows the details given there. Most users
will find the interactive features of RELEASE self-explanatory. We urge readers to use this
program to work examples as they read Part 2. Finally, we have provided a Glossary of the
notation we use.

We wish we could refer biologists to only one short section that would allow a quick
understanding of the material presented here. Unfortunately, the subject is large, comprehen-
sive, and complex. At the minimum, we believe most biologists should read most of Parts 1, 2,
4, and 9. We would hope statisticians would focus on Parts 3, 5, and 6, and develop additional
theory (e.g., as indicated in Part 8) as well as explore properties of procedures developed using
RELEASE. '

1.2. Statistical concepts

1.2.1. Maximum: Likelihood Theory

Fisher (1922, 1925) presented the method of maximum likelihood as an omnibus pro-
cedure for estimating parameters from sample data. Extensions of this method have produced
a well-known, powerful means to derive point estimators and estimators of sampling variances
and covariances. Likelihood theory allows one to assess the fit of the data to the model, and to
test a variety of hypotheses (Mood et al. 1974; Lehmann 1983; Berger and Wolpert 1984).
Parameter estimators, and likelihood-based inference in general, have excellent properties
such as little or no bias and maximum efficiency. Likelihood methods have been the mainstay
of most capture-recapture theory developed over the past 35 years (see Seber 1982), and we
use them extensively in this monograph.

Data discussed in the present work are usually modeled as a sample from a multinomial
distribution. The multinomial distribution is useful for discrete, mutually exclusive outcomes.
The outcomes of each throw of a die (“trial”) can be labeled 1, 2, 3, 4, 5, and 6, only one of
which is possible. If n throws are made, frequencies of the six possible outcomes can be
denoted as ny, 1z, .., ng. Given that the n throws of the die are independent, the joint proba-
bility distribution (Pr) of the observed data is multinomial: J
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n! 6 ]
Pr{n;, .., ne} = — H(Pz) H
H(ni)! 1=1
i=1

p: = probability of the ith outcome, i = 1, ..., 6. The probabilities must satisfy the constraints
0<p;<1foralli,andp, + --- + pe = 1. If the die is fair, each p; is known to be one-sixth.
In general, models contain parameters that are unknown; we wish to find estimators of these
parameters that have “good” properties. The estimators are functions of the observed sample
data and can be derived from the likelihood function L, which is the probability of the
observed data viewed as a function of the parameters. The likelihood function for the die tri-
als is

L(p]_, ey Pe ln]_, eey n6) = sn! v Ii].__[(ps)”‘]
IIe)t =

and is read “the likelihood of the unknown parameters p; given the observed (sample) data
n,-.”

The objective is to find the vector of parameter values that maximizes the likelihood
function. That is, parameter values are selected to make the sample data seem “most likely.”
A simple graph of the likelihood can illustrate the concept; however, the above likelihood
function cannot be graphed because it has five dimensions (only five because p; + -+ + pg
= 1). Therefore, let us consider a special case where only one unknown parameter exists. We
consider a series of simple penny-flipping trials of an unfair penny. The likelihood function L
is

L@ |npn) = p™@-p)™.

n!
(h)!(7e)!

Here p is the unknown probability of a “head” and n;, and n, are the number of heads and
tails, respectively, observed from n flips (n = n;, + n,) and 1 - p is the probability of a “tail.”

If a penny is flipped 16 times and 11 heads and five tails are observed, the likelihood
shown in Figure 1.1 is a simple plot of the function L(p|11, 5) versus p where 0 < p < 1. The
likelihood function changes for different sample outcomes n;, and n,. This change is illustrated
in Figure 1.2 for the result of 80 flips (n; = 55 and n; = 25).
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Figure 1.1. - Likelihood function for Figure 1.2. - Likelihood function for
a penny-flipping study where 11 heads a penny-flipping study where 55 heads
and five tails were observed in 16 flips. and 25 tails were observed in 80 flips.

The graphs show that some candidate values of the unknown parameter p are “relatively
unlikely” (i.e., those with small values of L) given the data observed. This phenomenon is
more obvious as sample size increases because more information becomes available. For
example, it appears that the penny is indeed unfair (the true p is probably not one-half). In
fact, one might speculate that a likely value for the parameter p might be about 0.7 because the
maximum value of the likelihood function corresponds to p at about 0.7.

The following extended example considers a likelihood function involving two unknown
parameters. Consider the previous example of released fish. For simplicity, it is assumed that
the marked fish were recaptured only at downstream dam 2 (a common situation). The data
available for consideration are then

Group Released Recaptured

t 10,000 390
c 9,000 412.
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The likelihood involves two estimable parameters, S, the survival rate of fish through (or over)
the dam, and p, — the sampling rate at dam 2 (in this simple example it is assumed that
D2 = Pe2), given that the fish were alive just below the first dam (where controls were
released).

Assumptions must always be made in any model. In this model, we assume independent
fates of all fish, which allows us to write separate probability models for the treatment and
control groups and to assume that the binomial model holds. We also assume that recapture
of fish is like the penny-flipping situation with parameter Sp, (the probability of surviving the
treatment, getting to dam 2, and being recovered) for the treatment group and p, for the con-
trol group. Finally, we assume that the effect of the treatment is negligible below dam 1.
These assumptions allow us to write the two following probability models,

Pr{m; | R} = Ki(Sp2)™ (1-Sp2)™™, and

Pr{m, | R} = K,(p2)™ (1-p2)™"™;

®! (R
B iRt T IR, )t

In this example, one would take

9,000!

Pr{mc = 412|Rc = 9,000} = W

(p2)"2 (1-p2)**=.

The product of these expressions yields the likelihood function for this simple experi-
ment (terms are rearranged below):

L(S, p2 | Ry, R,, m, m,) = (K1K3) (sz)m (Pz)m( (1 ‘sz)&-mt(l ‘P'z)Rc-mt .

Four terms involving parameters appear in the likelihood because we must account for
all fish both recovered and unrecovered from each of the two release groups. The expression
on the left is read “the likelihood of the unknown parameters S and p, given the number of
fish released in each group (R; and R,) and the number recovered at dam 2 (m; and m,), is
equal to.” Figure 1.3 provides a two-dimensional graph of the likelihood

L(S, p2 | data) = K(Sp2)*® (p2)*2 (1- Sp2)>®° (1-p2)®5%;
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0.01

Figure 1.3. - Likelihood function for a simple survival experiment in which treatment and control fish
are released at dam 1 and recaptured only at dam 2. Note that many values of the capture probability
(p,) and the treatment survival rate (§) are relatively unlikely.

!
K=K1K2=[ 10,000! ” 9,000! ]

3001 (9,610)! | | 412! (8,588)!

The expression for K contains no unknown parameters and can therefore be ignored in terms
of deriving estimators of parameters (however, K is useful in deriving tests of assumptions).
The relative shape of the likelihood function is, of course, identical whether K is included or
not.

Figure 1.3 also shows that most possible combinations of the parameters S and p, are
unlikely for the data observed.

1.2.1.1. Point estimation. - The likelihood principle (Edwards 1972) states that the
likelihood function contains all the information in the sample data and is the basis for deriving
estimators of parameters and tests of assumptions. Estimators of parameters under the
method of maximum likelihood (ML) are the values that maximize the likelihood. The ML
procedure is conceptually appealing and has many optimal statistical properties, at least for
large samples (Wilks 1962; Rao 1973; Mood et al. 1974) when the assumed model is true: lit-
tle or no bias and 100% efficiency. In particular, the ML method provides estimators that are
asymptotically normal, efficient, and unbiased.
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The ML procedure is easy to apply in many situations. Consider a likelihood involving
only one unknown parameter 6, L (¢|data). If L is unimodal, its maximum occurs where the
derivative (slope) with respect to 6 is zero:

3Lg060| data) - 0.

In practice, if the derivatives are to be found and the likelihood equations solved analytically, it
is easier to work with the natural logarithm of the likelihood function, the log-likelihood,
denoted as InL (9 | data ). Logarithms change the likelihood function from a product of terms
to a sum of terms, and thus allows differentiation on a term-by-term basis. For the penny-
flipping trials mentioned previously, the log-likelihood function (omitting the constant bino-
mial coefficient) is

InL (p | data) = ngIn(p) + nn(1 -p)

(in this case the generic parameter 6 is denoted p as before). The partial derivative of InL with
respect to the unknown parameter p is

dp p 1l-p

The maximum likelihood estimator (MLE) of p is found by solving the likelihood equation for
p. The resulting estimator is traditionally denoted as p; in general, hats (“*) are used to dis-
tinguish estimators from parameters:

P =ny/(m +ng),0tp = my/n.
For the data observed, n, = 55 and n, = 25,
D = 55/(55 + 25) = 0.69.

The example above provides an estimator said to be in “closed form,” meaning that the likeli-
hood equation(s) can be solved analytically for the parameter(s) of interest. If the likelihood
equations are “open,” i.c., cannot be solved algebraically, ML estimates can be derived by a
variety of numerical methods on a digital computer, which performs an “intelligent search” for
the parameter values that maximize the likelihood function. When values that simultaneously
maximize L are found, they are taken as the MLEs.
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In practical applications, one is interested in simultaneously deriving ML estimates of
several parameters, say 8, 6, and 63. If these parameters are denoted as 4, a column vector
containing 8,, #, and &, the MLEs can be found by solving the system of three likelihood
equations,

Sl (@|data) _ o ;_1
= b = 3 y 3'
o, !

Although the notation and algebra may not appear simple, the underlying concept of
ML is both simple and intuitively appealing. If the likelihood equations can be solved analyti-
cally, ML estimates can be computed using a calculator. In the present work, we present
closed-form estimators of parameters for most of the models under the various protocols. The
computer program RELEASE computes ML estimates for an array of specific models to be
introduced in Part 2.

Given a set of data and a formal statistical model (i.e., a likelihood function), one can
find a reduction of the data. Thus, a smaller set of statistics, which contains all the informa-
tion in the sample data, can be used instead of the raw data for all statistical estimation pur-
poses. This reduction leads to the concept of sufficient statistics. A sufficient statistic is one
containing all the necessary information about the sample. A sufficient statistic that cannot be
reduced further is a minimal sufficient statistic (MSS) (see Hogg and Craig 1970; Huzurbazar
1976; Lechmann 1983).

Minimal sufficient statistics are important for a number of statistical reasons (see Mood
et al. 1974). If an estimator is not based on the MSS, it is not fully efficient. If an MSS exists,
the ML method can be used to find it. MLEs are functions of the MSS. In addition, test
derivation often depends on the MSS. The MSS will be identified for the various models in
later chapters.

1.2.1.2. Estimation of sampling variances and covariances. — A sampling variance is
associated with each estimator and a sampling covariance is associated with each pair of esti-
mators. The sampling variance is a measure of the precision or repeatability of the estimator
and is usually a function of sample size and some of the unknown parameters. Sampling
covariances measure the degree to which two particular estimators are dependent because
they were computed from the same sample data. Often, these quantities are displayed in a
variance-covariance matrix, usually denoted ¥:
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—

varBr)  cov(®i, 82) cov(by,bs) --- cov(®y, 8,)
cov(l, 8) var@;)  cov(ly Bs) -+ cov(dy, B)
cov(®s, &) cov(ls, 82) var(ds) o+ cov(bs, 0,)

cov(a, B1) covdn, &) cov(l, 8s) --- var(d,)

The variances appear on the main diagonal and the covariances are symmetrical about the
diagonal: ie., cov(4;, 8;) = cov(d;, &) for all i andj. Often, it is convenient to consider the vari-
ance of the ith estimator [var(9;)] as the cov(®,, 4), referring to a covariance matrix. For any
actual study, one will have only estimates of the variance and covariances, and ¥ usually is
obtained by substituting estimates for parameter values. Conceptually, the sampling variance
is related directly to the curvature of the likelihood function at its maximum, A comparison of
Figures 1.1 versus 1.2 suggests that more is known from the large sample shown in Figure 1.2
than from the smaller one. Values at some distance from the ML estimate are relatively
“unlikely,” and this concept is measured by the sampling variance.

If the likelihood function contains only one parameter, the sampling variance estimator
can be derived as the negative inverse of the second partial derivative of the log-likelihood
function, evaluated at the ML estimate. In the previously described penny-flipping example,

. -1
. var (@) = -[E[ azlnLgape 2| data )” ’

which is estimated by

4
far(p) = [_ [821nLg@)g 2| data) ”

A
4

The procedure yields, for example, the often-used estimator of the variance of a binomial pro-
portion,

0ar(p‘)=M,n=nh+nt.

n
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If the likelihood contains more than one unknown parameter, the sampling variances
and covariances can be estimated from the negative of the matrix of mixed second-order par-
tial derivatives of the log-likelihood function. The resulting matrix, expressed as expected par-
tial derivatives, is called the information matrix. Because the information matrix is a function
of the parameters, it is denoted here as 1(§). Specifically, the (ij)th element of /(f) is given by

E &FInL (8 | data) ] ’
(96:)(%%;)

the quantity evaluated at the true parameter value, 6.

If the elements of the information matrix are evaluated at the ML estimates, then the
estimated variance-covariance matrix is

f=uor.

Most numerical methods use a matrix of mixed second partial derivatives (the Hessian matrix)
to find the maximum of the likelihood function and, therefore, the ML estimates 8. In this
case, I can be estimated with I(9) from the final iteration in the numerical procedure (see
Kale 1962).

The delta method (Seber 1982:7-8) provides an omnibus procedure for approximating,
estimates of sampling variances and covariances. The method gives valid large-sample (ie.,
asymptotic) estimates of variances and covariances and produces results asymptotically
equivalent to the information matrix approach. We use this method at many points in the
monograph. In addition, we encourage the use of empirical estimates of sampling variances in
an effort to relax the assumptions made in some models and to allow for heterogeneity in the
survival and recapture probabilities of individual fish (details on this subject are given in Part
4).

We chose the ML method for our development of statistical theory because it is an
excellent omnibus approach (within a frequentist inference approach) and is particularly well
suited for models based on the multinomial distribution (a member of the exponential family
of distributions). Estimation methods are then based on a general stochastic model for the
sampling distribution of the data. MLEs are asymptotically unbiased, fully efficient, and nor-
mally distributed. Some estimators have a “small-sample” bias and RELEASE allows bias
adjustments to the exact MLEs to be made as an option.

1.2.1.3. Method of expectation. — A critical step in many statistical analysis problems is
to specify one or more plausible sampling models for the data. Conceptually, these sampling
models take the form of probability distributions; hence, the essence of the model is a
mathematical statement. Symbolically the statement is ’



1.2, STATISTICAL CONCEPTS 15

Pr{data|parameters},

or

Pr{X1, . Xo |61, s B}

As introduced above, once one has actually observed specific values of the variables, then one
can convert the probability model to a likelihood in terms of the parameters and derive ML
estimates. Rather than do this process on a case-by-case basis, mathematical statisticians have
investigated short-cut ways to derive the ML estimates, 8, ..., §,. In particular, when the &;
exist in closed form, they can often be found by simple methods. We make extensive use of
these more sophisticated methods here; we do not, in fact, find it necessary to write out the
full likelihood for our recapture models, take partial derivatives, and solve the resultant equa-
tions.

The first, and most important, step in an analysis of a statistical model is to use the like-
lihood to identify the MSS under that model. There is much theory about finding the MSS
(e.g., Lehmann 1983). The MSS will take the form of some / functions of the data, T;(Xj, ...,
X,),i = 1, .., I. For example, in many situations the mean, X, is one component of the MSS.
In the capture-recapture models considered here, the MSS always turns out to be various sums
of recapture counts. The dimension of the MSS is /.

Two situations distinguish themselves: (1) the dimension of the MSS is the same as the
number of parameters (ie., / = a), or (2) there are more MSS components than parameters
(! > a). (The case of / < a can occur, in which case not all @ parameters can be estimated.)
Once the MSS is known, the next step is to find its probability distribution (if possible), or at
least find the expected values, variances, and covariances of the MSS. Let

E(T;) = gi(ab ooy oa) ’ i= 1, ooy )

be these expected values. In the full-rank case of / = @, the ML estimators of the 6; can be
found by solving the @ equations that result from equating the observed values of T; to the
expected values:

Ti = gi(ol’ e oa) ’ i= 1, ey @

Most of the models considered in detail in this monograph are full rank and the “method of
expectation” is how we found the ML estimates. Davidson and Solomon (1974) provided
insights on the justification of this procedure. Also, Appendix B of Brownie et al. (1985) gives
some more technical details of this approach.

When the model is not full rank, but rather has/ > a (fewer parameters than MSS ele-
ments), iterative numerical methods are usually needed to find the MLE; ie., closed-form
solutions do not usually exist. Many models worth using or trying in capture-recapture are not
full rank. (Those models can be analyzed using a combination of programs RELEASE and
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SURVIV.) Appendix B in Brownie et al. (1985) gives some details of numerical procedures of
parameter estimation with nonfull-rank models.

Whether the ML estimator 8 is obtained from closed-form formulae or numerically, it
still has a variance-covariance matrix that can be estimated. Theoretically, those variances and
covariances are defined in terms of second derivatives of the likelihood function. However,
they need not always be found that way; there are short cuts to finding variances just as there
are short cuts to finding the ML estimators. We have used those short cuts here. In the full-
rank case, all one needs is the expectations and variances and covariances of the MSS. Then
the link provided by

E(Ts) = gs(g) ’ i = 1, sy @

allows one to derive both 2 and the variance-covariance matrix of §. Consequently, again we
derived our results without having to take first and second partials of the likelihood. Note,
however, results we present on the various models considered could have been derived by tak-
ing partials of likelihoods; it is just that there are easier, advanced methods available.

Finally, we again note that the key to these derivations of estimators (and tests) is
identification of the MSS under any model and model sequence, and then the determination of
the sampling distribution of that MSS.

12.14. Hypothesis testing. — Tests of various hypotheses are important in capture-
recapture sampling and experimentation. Cormack (1968) stated, “In all cases every iota of
information, both biological and statistical, must be gathered to check and countercheck the
unavoidable assumptions.” Much of the hypothesis testing herein relates to tests of underlying
model assumptions or to selection of an appropriate model. Hypothesis tests, in the context
here, fall into two broad classes: goodness of fit tests and between-model tests. The
difference is illustrated by considering the null (H,) and alternative (H,) hypotheses for each
type of test.

The null hypothesis for a goodness of fit test is that the model fits the data; the alterna-
tive hypothesis is that the model does not fit the data. The alternative is broad and not
specific. We can expect the power of this test to be lower (often much lower) than the
between-model test due to the generality of the alternative.

Between-model tests deal with a comparison of two specific models, e.g., model A and
model B, wherein model A is a special case because it is a reduced parameter version of
model B. The test evaluates model B as an alternative to model A (the null hypothesis).
Specifically, the null hypothesis is that model A fits as well as model B; the alternative
hypothesis is that model B fits the data better than model A.
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Both tests involve a statement about one or more parameters in the model. Information
regarding the validity of the null hypothesis is based on the value of a test statistic calculated
from the experimental data. Most of the test statistics here are distributed approximately as
chi-square under the null hypothesis. The approximation to the chi-square distribution
improves as sample size increases. Figure 1.4 presents the chi-square distributions for 1, 3, 10,
and 25 degrees of freedom (df). The probability of a test statistic being as large as that
observed under H (i.c., computed from the data) can be found from the chi-square distribu-
tion. Generally, if a test statistic is improbable (e.g, P = 0.002), the null hypothesis is
rejected. Improbable values (@ < 0.05) of the chi-square distribution are shown in the shaded
areas of Figure 1.4. Conversely, if the test statistic is probable under the null hypothesis (e.g.,
P = 0.45), there is no reason to reject the null hypothesis.

0.4 —

A 1df

0.3 —

Frequency

0 5 10 15 20 25 30 35 40 45

Value of test statistic

Figure 1.4. — The chi-square distributions for 1, 3, 10, and 25 df. In each case, the 0.05 rejection region is
shown as a shaded area. Nearly all test statistics presented in this monograph are distributed
asymptotically as chi-square. Program RELEASE computes the exact significance level numerically,
making tables or arbitrary rejection levels unnecessary (from White et al. 1982).
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As an example, consider the null hypothesis (Ho: p = 0.5) that a penny is “fair” (on the
average 50% of the tosses will be heads and 50% will be tails). The alternative hypothesis
(H,: p #0.5) is that the penny is “unfair.” The results of a set of 1,000 trials might be that
506 tosses are heads and 494 tosses are tails. Intuitively, one might accept the null hypothesis
that the penny is fair because the observed values are close to 50:50. Statistical hypothesis
testing allows this intuition to be quantified and formalized. In this example, 2 = 0.1 with 1
df. Figure 1.4 shows that this small value is likely if the null hypothesis is true. If, however, 55
heads are observed in 80 flips, x¥* = 56 with 1 df. The probability of a value this large, if the
null hypothesis is true, is essentially zero and we conclude that the penny is unfair.
Quantification allows statistical inferences to be made in complex situations where intuition is
of little value.

Most of the tests presented in this monograph are in the form of contingency tables.
The subject of contingency tables is covered in most statistical texts on elementary testing
methods; we provide only a brief review here. Consider n randomly selected items classified
according to two different criteria. The results could be tabulated by rows for one criterion
and by columns for the second criterion in a contingency table:

iy N2 Ni3 T Rie ny,
noy (3] No3 M Roe no
Nz Nz Ngs Tt B3 ns
nyy Re2 ne3 tte Ry n,,
n,y na ngs ne n

This » % ¢ table contains the observed data for each cell. If n is large, a good approxima-
tion is to compute the test statistic

S

¥ =Y Yy -Ey)’ [ Ey;

r
i=13=1

ng; = the observed number in the (ij)th cell;
E;; = the estimated expected number in the (if)th cell under the null hypothesis.

The null hypothesis is one of homogeneity. The estimated expected value for n;; under
this null hypothesis is then
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nn g
E; = g
n; = the total of rowi,n; =n;y + -+ + ng;
n; = the total in column j,n; = ny; + -+ + ng

Note also that n =n_ = ZXn,;;. The degrees of freedom for these contingency tables are
(r- 1) (c - 1) (Ostle 1963; Snedecor and Cochran 1967).

We present many tests that are computed from a series of (conditionally) independent 2
x 2 tables. Standard statistical texts provide shortcut formulae for the computation of the test
statistic from such tables with only two columns and two rows. A convenient computational
method for a 2 x 2 table of the form

a b (a+b)
c d (c+d)

(a+c) (b+d n

is

2 = n (ad - bc)?
T (@+c)p +d)a+b)c+d)

Such 2 x 2 tables have only 1 df (i.e., [2-1][2-1] = 1). By way of interpretation of this test, it is
just testing that the expected proportions @ /(@ + b) and ¢ /(c + d) are the same.

If some expected values (E;;) are small (e.g., <2), the approximation of the test statistic
to the chi-square distribution may be poor. This approximation can be improved by pooling
cells by row or by column. Each cell pooled results in a loss of 1 df. When recapture data are
sparse, rows and columns are often pooled to the extent that only a single 2 x 2 table remains.

Here we present material to provide biologists with some insight into how certain tests
are derived using a simple example. No effort is made to provide the theory for the pro-
cedures outlined. The example is taken from Section 1.2.1: 10,000 treatment and 9,000 con-
trol fish were released at dam 1 and 390 treatment and 412 control fish were recaptured. The
probability models for these two cohorts, presented earlier, are

Pr{m, | R;} = K, (Sp2)™ (1-Sp2)™ ™, and

Pr{m, |R.} = K, (Pz)mc @ 'I’Z)Rﬂ.mc )
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_(R) _ R)!

Kt - \mt‘ - (mt)! (Rz'mt)! ’
_[Re) R)!

Ko = Me) — (me)! R, -me)!

Interest is in'the hypotheses

H,: The survival and capture rates for the two cohorts are equal (i€, S = 1; no treatment
effect) versus

H,: The survival and capture rates for the two cohorts are different (i.e., S # 1; a treatment
effect or 2 #Ppe2)-

Under H, the MSS for the treatment cohort is MSS, = m, and the MSS for the control

cohort is MSS, = m,. Under the null hypothesis the MSS is MSS ¢ = m; + m,.

A test of Hy can be derived from the residual distribution of the data, conditional on the
MSS, given H| is true. Symbolically, the distribution is
Rt Rc
my mg

R, +R,)
mt+mc

This type of test was used in similar contexts by Robson and Youngs (unpublished report,
1971), Brownie and Robson (1976), and Pollock et al. (1985). Moreover, this type of test is
known to be optimal from the general theory of hypothesis testing (Lehmann 1959). When we
define

Pry, {MSS;, MSS, | MSSO} =

R, + R,
Ko - [mt + mc]’

the distribution is

K; K,

Ko

PI'H0 {MSS,;, MSSc I MSS 0} b
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The distribution is hypergeometric, allowing a 2 x 2 contingency table and a chi-square test
with 1 df to be derived. The table is

m R -my
mg Rc -m,

Columns of the contingency table represent “recaptured” versus “not recaptured” for each of
the two groups. The values for the example provide the following table

390 10,000 - 390
412 9,000 - 412

Heuristically, this test is comparing the two estimated proportions

G 3%

72 = 10,000
and

. 412

P2 = 9000

The above contingency table results in x = 5.38, 1 df, and P < 0.02; thus, we conclude that the
treatment has affected survival of the treatment group or that the capture rates of the treat-
ment and control groups were unequal.

Many between-model tests are made in later chapters. Testing between two models
represents a way to test a complex hypothesis. In general, such tests can be derived as likeli-
hood ratio tests, in which one model is a special case (i.e., reduced number of parameters) of
the other model. As an example, let

L (6,) = alikelihood function with n parameters (e.g., ¢1, ¢z, .., 6, P2), ---» Pe, Where n = 11);

L (fo) = a likelihood function with fewer parameters, m <n (e.g., ¢4, ..., ¢g, p, where m = 7.

The likelihood L (§) corresponds to the null hypothesis that the parameter p is constant
(ie, p2 =ps = '+ = pg = p). The alternative hypothesis is that the parameter p varies.
Both
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hypotheses allow for variation in the parameter ¢. A test of the null hypothesis is based on

L)

where both likelihoods are evaluated at their MLE values. The test is asymptotically chi-
square distributed with n - m df. A significantly large test statistic is taken as evidence that the
null hypothesis is false (e.g., that the parameter p is not constant, as in the example above).
Further information on likelihood ratio tests was given by Lehmann (1959) and Hogg and
Craig (1970).

The contingency table procedure often results in a test that is equivalent to a likelihood
ratio test, if no pooling is necessary because expected values are small. The contingency table
approach outlined is preferable to the likelihood ratio test because data can be pooled easily if
the expected values are small. Consideration of the partitioned test statistics is possible when
data from more than two dams are available, thus a finer interpretation of the hypothesis test
is allowed (however, the example used here cannot be partitioned). This general approach is
used to derive most of the tests here.

In the case of a full-rank MSS for both the null hypothesis and alternative hypothesis
models, the contingency table tests can often be found, and are then to be preferred. When
the MSS are not full rank, one must usually rely on the likelihood ratio test procedure. The
likelihood ratio test is an omnibus procedure justified by large-sample theory, we use it espe-
cially in the case of nonfull-rank models. However, for the most part, we were able to find the
simpler contingency table tests of hypotheses that go with the full-rank models presented here.

X um) = 'Zln[L(ao)]

1.2.2. Components of Variance

A conceptually difficult, but important, issue deals with components of variation in sam-
pling and experimentation. A review of these concepts is presented here; more information
_ can be found in White et al. (1982) and in many statistical texts. The two main classes of varia-
tion are population and sampling variation. For the moment, we concentrate on the meaning
of these terms rather than on how they might be computed or estimated.

1.2.2.1. Spatial and temporal variation. — Variation in biological population parameters
occurs commonly. A biological parameter (§) is likely to vary over space and time (e.g.,
because of environmental factors), and may also vary among individuals. If the parameter is
annual survival, it varies by species and age and perhaps by subpopulation. Survival probabili-
ties may also vary among individuals from the same subpopulation, age, sex, size, and so forth.
It is immaterial, for the moment, whether the value of the parameter over time, space, species,
or subpopulation is known, but any population parameter may vary. In general, we denote this
population variance as 0%:
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2= Lye oy
N i=1

for N values of 6, 6y, ..., fy corresponding to N different populations; no sampling variation is
involved here. If N is large and a sample of # populations has been taken, then (for known 6;)
the estimator of o2 is

&= %69/ (- ).

=1

As an example of population variation, consider the number of bluegills Lepomis macro-
chirus in a small pond. A complete census on 10 June each year for 7 years provides the exact
annual population size (by definition, this is a parameter). It would be unusual if the true
number of fish was the same each of the 7 years. Thus, the population parameters vary. This
population variation is conceptually measured as o and might, in this case, be termed tem-
poral variation. The researcher or manager has no direct control over o (except, perhaps, by
redefining the population itself or by some perturbation); it is a characteristic of the popula-
tion.

Population variation might also occur spatially. For example, true population sizes are
likely to differ among ponds of similar size and type. Spatial variation among population
parameters is to be expected.

1.2.2.2. Sampling variation. — Sampling variation occurs because only partial informa-
tion about the population normally is available. Exactly which members of a population fall
into the sample is a result of a stochastic process, if the sampling process is unbiased toward
particular members of that population. These processes are fundamentally unpredictable, as is
the specific outcome of a flip of a penny.

Sampling variance is a measure of precision or repeatability of a result based on sample
data; it is the measure of uncertainty. In general, sampling variance will be relatively small if
each sample contains a large fraction of a population and relatively large if each sample con-
tains few members of the population. The precision of results from a properly designed study
can be estimated from information collected as part of that study.

Sampling variance of an estimator, 9, is denoted var(f). Technically, one should write
var(9 | §) because this measure of variation is conditional on the true (unknown) value of 6.
Generally, one has only an estimate of the variance var(§). Unlike the population variance, the
experimenter has considerable control over the magnitude of the sampling variance by virtue
of the study design. The most obvious way to decrease the uncertainty of the sampling pro-
cess, and decrease the variance, is to increase the size of the sample or the proportion of the
total population sampled. Other common ways to decrease the sampling variance include
stratification of the population or use of a better estimation method. The standard error (se),
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an alternative measure of an estimator’s variability, is related to the variance by

var(®) = [se(®]°.

The terms “high precision” and “unbiasedness” represent indices of high accuracy. One
can strive for this accuracy by careful attention in the design of surveys and experiments and in
the use of good analytical methods. Consider a lake inhabited by lake trout Salvelinus namay-
cush susceptible to parasitism by sea lampreys Petromyzon marinus. An investigator wants to
estimate the proportion (p) of these fish bearing at least one lamprey. An initial estimate,
p1 = 0.19, is computed from the first sample (considered here as one unit of effort). Immedi-
ately, three additional samples are drawn and p, = 0.12, ps = 0.18, and pa = 0.27. The varia-
tion among these estimates p; is sampling variation, as the parameter p has not changed. In
the example, the precision or repeatability for one unit of effort is only fair. However, if unit
cost is low, sufficient sampling will lead to reliable results.

Finally, we consider an example where both population and sampling variation occur.
Assume that the lake is surveyed once each year to estimate the proportion of lake trout bear-
ing one or more sea lamprey. The data for 5 years are as follows:

Unknown Standard
Year parameter  Estimate error
1 p1=013 p; =019 Se(p,) = 0.042
2 py=017 p, =012 se(py) = 0034
3  p3=016 ps=020 Se(ps) = 0043
4 py=013 p,=018 Se(py) = 0035
5 ps=016 ps=011 se(ps) = 0.039
x =015 PF=016 se@) = 0017

Here, Se(p) = 0.017 includes only the sampling variation. This se(p) is the square root of the
estimated theoretical var(p);
a1 ko N2
var(p) = = 3, [se(p,-)) .
52 =1
In contrast, if an average (p) is computed from these five estimates, the empirical variance of p
is
5 R -~ 2
Y@:-P)

- ~ 2
Sar ) = _;_ i1 . _ (0.04;833) _ 00187y
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This Var(p) includes both population (temporal) variation among the true p; (¢2) and condi-
tional sampling variation of the p; [var(p;)]. Temporal population variation results from
changes in the true proportion from year to year. Sampling variation occurs because only a
sample of fish was examined, not the entire population. Often, one wishes to estimate o2, the
variance among the true parameter values. This subject is discussed in Part 4. For now, the
reader need only be aware of the distinction between these two types of variation.

1.3. Release-Recapture Protocols and Data

13.1. Introduction

The formal basis for the development of a statistical theory to underly survival experi-
ments is the extensive literature on capture-recapture sampling (see Seber 1982, 1986 and
Brownie et al. 1985 for recent reviews). This literature deals almost entirely with the estima-
tion of population parameters (e.g., population size, survival rate, or number of births by time,
sex, age-class, or geographic area) or the testing of various hypotheses concerning model
assumptions. The theory presented herein extends capture-recapture methodology into sur-
vival experiments to assess the effect of a treatment on survival rate. The basis for such assess-
ments is a control group of marked animals which enables the treatment-control comparisons
that are standard experimental concepts of long standing.

We present extensive consideration of experiments with a treatment and a single control
in Part 2. We consider extensions to multiple treatment and control groups in Part 3, which is
more abbreviated, as it concentrates on presenting theory. Assume that a known number of
fish in each of two groups is marked and released at dam 1. The first group is marked to
denote that they are in the treatment group (¢ = treatment), while the fish in the second group
constitute the control group (c = control). The known numbers marked and released are
denoted as R;; and R,; for treatment and control fish, respectively (R = Released), at dam 1.
Throughout this monograph, we use a capital R to denote the number of fish released. We
use an initial subscript to denote treatment or control as well as further subscripts to denote
the specific release and recapture site (see Glossary).

The treatment may be the passage of the fish over a spillway, through a turbine or
bypass system, or around a deflecting screen or barrier. Because survival of fish through vari-
ous types of hydroelectric turbines is of concern, we use this as a primary example. Assume
that a known number of marked fish (R;;) is designated to receive the treatment and is
released above dam 1 directly into a turbine intake. Simultaneously, a known number of con-
trol fish (R,,) is released immediately below the dam near the end of the draft tube (see Fig-
ure 1.5).
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As both groups move downstream, they are sampled at one or more downstream dams
or other sampling sites. The only difference between the two groups is that some fish in the
treatment group may have been killed while passing through the turbine and other parts of the
dam structure.

Fish often are given only a batch mark, which is enough to allow their treatment or con-
trol status to be recognized when they are recaptured at sampling sites downstream. For
example, all the treatment fish (R;;) could be branded with a “T” and all the control fish (R.;)
with a “C” (or any other two marks that can be distinguished clearly).

Alternatively, fish may be marked with a unique tag or number. New technology may
make this approach more feasible in the future (e.g., passive integrated transponder [PIT]
tags). New types of tags are just starting to be evaluated (Prentice and Park 1984, 1985). We
will assume here that tags are not lost and that marks remain readable.

A common example of unique marks is the individually numbered bird bands issued by
the U.S. Fish and Wildlife Service. The use of unique marks has many advantages in that the
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Figure 1.5. - Idealized diagram of a dam, some of its components, and points of release of the treatment
and control fish. (Redrawn from Olson and Kaczynski, unpublished report, 1980.)



1.3. RELEASE-RECAPTURE PROTOCOLS AND DATA 27

specific capture history and movements of each fish or other animal can be tabulated and
analyzed. In the final assessment, the primary disadvantage is cost. These issues relating to
uniqueness of marks will be covered in more detail in the material that follows.

The structure of the release-recapture data can be seen by considering only the control
fish released below dam 1 (R,;). If we consider only the first recapture for each fish (regard-
less of where this might occur), the recapture data have a multinomial sampling distribution if
independent fates can be assumed. Thus, a fish released can be first recaptured at only one of
the downstream dams (dams 2, ..., k), or it may never be recaptured. These outcomes are
mutually exclusive and exhaustive.

Now consider the subset of the R,; fish that are first recaptured at dam 2. We use m,;,
to denote this number of fish; “m” is used because these recaptures are of marked fish. Three
outcomes are possible:

(1) All m,,, fish survive recapture and handling and are rereleased at dam 2 as a subset
called R,.

(2) Some fish are accidentally killed or ihjured or are removed deliberately; the remaining
fish are rereleased and called R, ,.

(3) The number of m,,, fish recaptured that survive is added to a known number of new
fish (to be initially released at dam 2) and the entire release is called R, 5.

The first two cases (1 and 2) are perhaps the most common in survival experiments; i.e., an
initial release at dam 1 followed by the potential recapture and rerelease of the same fish at
several downstream sites. In some studies (case 3), new fish are also released at the down-
stream capture sites along with the recaptured fish.

The term “losses on capture” is used in the literature (Jolly 1965) to describe fish killed
accidentally or removed intentionally during recapture and handling. The important point is
that the number of fish released or rereleased is known. In the above example, the releases at
dam 2 (R,;) could be

(1) less than the m,, captures at dam 2 due to some losses on capture;
(2) equal tom,;s if no losses on capture occur;

(3) larger than m,;o due to the release of new fish along with “old” fish already in the
experiment; or

(49)  zero, because all fish were intentionally removed or accidentally killed.
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In case 4 (above), only data on first captures are available. This situation is relatively
simple and is examined in Chapter 2.2.

The sequence of possible recaptures of each fish leads us to consider the concept of a
capture history for each fish used in the study. The capture history of a fish is a succinct way
of tabulating the dams at which it was recaptured and possibly rereleased. Capture histories
are denoted as a series of ones (= captured or recaptured) and zeros (not captured or recap-
tured). For example, the string of six values, {100101}, represents the capture history of a fish
initially released at dam 1 and recaptured at dams 4 and 6. In general, if there are k release-
recapture dams, the capture history consists of k-ordered ones and zeros. The ith digit
represents what happened to the fish at the ith dam.

1.3.2. Capture Histories and Data Ai'rays

Statistical methods for the estimation of unknown parameters or the testing of
hypotheses are based on the capture histories of marked fish. Practicalities aside, the most
informative experiment is provided by an adequately replicated experiment involving the
release of large samples of uniquely marked fish recaptured at a high rate at several down-
stream dams. Although this experiment may be the ideal, experimentation can be conducted
under a host of other conditions. First, we must introduce several levels of data summariza-
tion.

1.3.2.1. CH matrix. — The capture history (CH) matrix provides specific capture his-
tories (e.g., {110001}, or {101011}) as rows, along with the number of fish, by treatment
group, having that capture history. Consider a particular row of a CH matrix as an example:

{1011101} 37 43,

which represents the results for a particular capture history over seven dams. The interpreta-
tion is that, of all treatment and control fish initially released at dam 1, 37 treatment and 43
control fish were recaptured and rereleased at dams 3, 4, 5, and 7 (and these fish were not
captured at dams 2 or 6).

Because the CH matrix is a concise summary of the basic data it is important that the
reader become familiar with it. A minus sign indicates fish lost on capture or deliberately
removed. For example,

{1011101} -4 -3

is similar to the previous example, but signifies that there were four treatment and three con-
trol fish with this capture history that were removed at dam 7. Therefore, 37 and 43 fish were
recaptured and rereleased alive in addition to four and three fish that were recaptured but
removed (e.g., they died accidentally, were seriously injured, or were intentionally removed).
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In general, we recommend the use of the CH matrix as a starting point in the analysis. Pro-
gram RELEASE can compute useful summaries of the data from the CH matrix.

A detailed example of a CH matrix is shown in Table 1.1. We make extensive use of this
general numerical example.

Table 1.1. — The capture history (CH) matrix for the example
data set. The numbers of fish either recaptured and rereleased or
recaptured and removed are shown for each capture history by
treatment (¢) and control (¢) groups.

Number recaptured
Capture history t c
100000 25925 24605
100001 563 605
100001 -27 -36
100010 508 522
100010 -23 : -25
100011 17 23
100011 -1 -1
100100 1500 1678
100100 81 -57
100101 45 48
100101 -3 -1
100110 37 4
100110 -2 2
100111 1 2
101000 193 207
101000 -14 -10
101001 5 9
101010 7 4
101100 16 14
101100 -1 -1
101101 1 1
101110 1 1
110000 872 935
110000 -29 -33
110001 26 28
110001 -1 -1
110010 16 18
110010 -1 -1
110100 67 68
110100 -3 4
110101 1 2
110110 1
111000 10 12
111001 0 1

111100 1
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These data are from a hypothetical study of turbine survival where fish are released at
dam 1 and recaptured at five downstream dams. We assume that 30,000 treatment fish are
released into a turbine intake of the dam (R,; = 30,000) and 29,000 control fish are released
simultaneously immediately below the dam (R.; = 29,000); see Figure 1.5. These data are
useful for illustrating analyses because they were generated from known parameter values that
we pre-selected. We took the treatment survival rate of fish passing through the turbine and
structure of the dam to be 0.9 (§ = 0.9), which means there is a 0.9 probability of a treatment
fish surviving from the mouth of the turbine intake to the point of release of the control fish
just below the dam. This subject is discussed in Chapter 1.5.

We assume that each fish was given a unique tag or mark. Losses on capture were
small, averaging about 3.5% of the fish recaptured at each of the five downstream dams. The
survival rates (¢;) of fish between dams and recapture rates (p;) are shown in Figure 1.6.

DAM 4 DAM S
DAM 6
DAM | DAM 2 DAM3

INITIAL P,=0.08  P;=0.03

Pg=0.04
RELEASE P,=0.04 P,=0.01
Rt
Rel
¢c| =0.98
$2:0.95 $3=089 . £,2090  P-0.86
@, =0.882 > > > >

Figure 1.6. — Parameters used in the general numerical example. Because the recapture rates in this
example are equal for treatment and control fish, the ¢ or ¢ subscripts are not used (i.., pc; = Pia = pa)-
Similarly, the dam-to-dam survival rates for treatment and control fish after the first survival rates are not
subscripted for treatment group. The survival from dam 1 to dam 2 differs by treatment and control.
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_ The release and recapture data are shown symbolically in Figure 1.7 and given numerically in

Table 1.2. This example is simple but includes some ideal assumptions. These assumptions
are relaxed in Part 2, but it is important to understand the formulation of the problem before
various extensions and special cases are considered.

The recapture rates (p;; and p, ;) represent the probability of a fish being recaptured at
dam i, given that the live fish reaches the ith dam. The recapture rates used in the example
are small, averaging only about 4%. Although this recapture rate is typical for many studies
that have been conducted on the Columbia River, it would be better if these rates were higher
because precision and test power would be improved.

The survival rates ¢;; and ¢,; represent the probability of a fish in one of these two
groups surviving from dam i to dam i + 1. We chose these parameters to be fairly high (0.86-
0.98 for control fish); however, the total survigfal between dams 1 and 6 for control fish is 0.641

(the product of ¢,1, ez, Pe3s fea, and ¢.5: []#e). The parameter representing the treatment
£=1

effect is the survival rate S. In this simple example, S = ¢ /¢.; = 0.90. The estimation of the

treatment effect S under different models and sampling protocols represents the focus of this

monograph.

DAM 5 DAM 6

DAM |

DAM 2 DAM 3

RECAPTURE RECAPTURE

INITIAL RECAPTURE DATA DATA
RELEASE RECAPTURE RECAPTURE DATA m m
Rel ~ DATA DATA m cis cie
m m cla mcas mc2e
ci2 ci3 Me2a
L Mc3s Mcae
m
34 Meas Mcas
Mcse
RELEASE ‘RELEASE RELEASE RELEASE RELEASE
| 2 3 4 5
ReoiMe2 Rez™Me s+ Meas Rea=Mcia Res=2Z Meis Reg® 2 mejg
Meo,+m i=l i=l
c2atMc3a

Figure 1.7. — Notation for the recapture and release or rerelease data for the control group in the
general numerical example. In the figure, no losses on capture are assumed. If such losses occur, they
are not included in the total to be rereleased (R;).
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Table 1.2. — Survival and recapture probabilities for the general numerical example. Treatment and control
fish are assumed to have been released at dam 1 and potentially recaptured and rereleased at dams 2-6.

Recapture probabilities Survival probabilitiez;a

Dam i Pt =Pl e i
1 0.98 # 0.88
2 0.04 0.95 = 0.95
3 0.01 0.89 = 0.89
4 0.08 . 0.90 = 0.90
5 0.03 0.86 = 0.86
6 0.04

ag _ =
S = du/da = 09.

Examination of Table 1.1 shows that, of the initial releases, 25,925 treatment and 24,605
control fish were never recaptured at any of the five downstream dams (see row one of the
CH matrix); 563 treatment and 605 control fish were recaptured and rereleased only at dam 6
(capture history {100001} in row two), and an additional 27 treatment and 36 control fish were
recaptured only at dam 6 and lost on capture. The fish lost on capture are denoted with a
minus sign because they were not rereleased. The interpretation of the rest of the CH matrix
is similar.

1.3.2.2. Full m-array. — The CH matrix is a compact way to present the basic data from
any survival experiment in which marked animals are released and recaptured. All estimation
methods and tests can be based on the information contained in the CH matrix. However, the
CH matrix can be summarized in what we call the full m-array as an equivalent representation
of the data. The full m-array contains every iota of information from the experiment, but is
more easily interpreted than the CH matrix because it is directly related in format to our sta-
tistical modeling of release-recapture data and to the computational procedures for some
hypothesis tests.

For each treatment or control group in the study, there is a separate full m-array. The
recapture data are represented as m,,;, the number of first recaptures, on occasion j from
releases on occasion i (i < j), by group (v). The data are represented in a full m-array in terms
of releases and first recaptures after release. Moreover, the releases R,; and recaptures 77,
are partitioned by capture history 4 (at release time i) into all possible subcohorts. Thus, an
example of one line of this full m-array is of the form '
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= {101} Riss , Meaan, Myash 5 -y Myskh -

We find that it is useful to append the values r,; and Ry, - 7 (total fish ever recaptured from
those released and those never seen again) onto the above line.

There will be k - 1 major portions (row groupings) of the array (k - 1 releases; releases
at dam k are irrelevant). Within the ith portion (releases at dam i), the number of subcohorts
is variable, as it depends on the number of previous capture occasions. Table 1.3 shows the
full m-array for the treatment group data of the numerical example, e.g., for 2 = {101}, R,q,
= 224, The corresponding recaptures at dams 4, 5, and 6 are m,ay, = 19, myas, = 7, and niyag,
= 5, respectively. A fish recaptured n times will be represented in n different rows of the full
m-array.

A detailed example will make the full m-array more clear. Consider the recapture data
on treatment fish at dam 3 in Table 1.3, especially the shaded area. Of the 30,000 fish initially
released at dam 1, 238 were first recaptured at dam 3 (their capture history is {101}). Of the
238 recaptured fish, 14 were lost on capture leaving 224 fish available to be rereleased. In
addition, 1,029 fish were captured at dam 2 and, of these, 1,000 were released (29 were lost on
capture). Of these 1,000 fish released at dam 2, 11 were recaptured at dam 3 and all were
rereleased (no fish were lost on capture). These 11 fish have capture history {111}, as they
were released at dam 1, captured and rereleased at dam 2, and then captured and rereleased
at dam 3. Therefore, 235 fish were released at dam 3 (224 plus 11 = 235). In order to retain
all the information in the CH matrix, the full m-array must also present losses on capture
(shown in parentheses). The reader is encouraged to work through the meaning of the full
m-array, as it is used frequently in material that follows.

Program RELEASE complites the full m-array as an option, if ¥ < 9, from the CH
matrix. Figure 1.6 presents material that aids in the interpretation of Table 1.4 for the control

group.

1.3.2.3. Reduced m-array. — A summarization of the data from a survival experiment is
the reduced m-array, which combines data over subcohorts within cohorts. The reduced m-
array allows the biologist to view critical summary data in a simple format. Capture-recapture
data are usually published in the literature in what we call the reduced m-array (see, for exam-
ple, the data presented by Jolly 1965).

- The reduced m-array contains all the information needed for estimation of the ¢; and p;
parameters under the usual Jolly-Seber assumptions, but lacks some important information
required for components of the full testing procedure. Nonetheless, the reduced m-array is a
valuable summary of the data, and extensive use is made of such summaries in this mono-
graph. Program RELEASE allows the user to input the data as either a CH matrix or a
reduced m-array.
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Table 1.3. — Release-recapture data generated for the treatment group used in the general numerical
example. The full m-array is given for the complete capture history protocol. Losses on capture are in
parentheses and capture histories, up to and including dam 7, are shown in braces (e.g., {1011} represents
a fish initially released at dam 1 and recaptured at dams 3 and 4). Information on the number of fish
released or rereleased appears to the left of the line and the number of first recaptures to the right.
Release-recapture data (R, and my;;51)
Total Never
recaptured  recaptured
Release 1 2 3 4 5 6 Fin Rﬂh =Tein
Initial (XK ¥ ¥ v
release {1} 30,000 | 1,029(29) 238(14)% X< 1,669(81)  549(23)  590(27) 4,075 25,925
Rereleases
at dam 2 {11} 1,000 11(0 73(3) 17(1) 27(1) 128 872
Rereleases 19(1) 7000  5(0) 31 193
at dam 3 1(0) 0(0) 0(0) 1 10
Rereleases {1001} 1,588 40(2) 48(3) 88 1,500
at dam 4 {1101} 70 2(0) 1(0) 3 67
{1011} 18 1(0) 1(0) 2 16
{1111} 1 0(0) 0(0) 0 1
Rereleases {10001} 526 18(1) 18 508
atdam S {11001} 16 0(0) 0 16
{10101} 7 0(0) 0 7
{10011} 38 1(0) 1 37
{11011} 2 0Q0) 0 2
{10111} 1 0(0) 0 1

3The shaded area represents the numbers captured, lost on capture, and rereleased. For example, 224 fish
were released at dam 3 from the 238 caught; 14 were losses on capture.
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Table 1.4. - Release-recapture data generated for the control group used in the general numerical
example. The full m-array is given for the complete capture history protocol. Losses on capture are in
parentheses and capture histories, up to and including dam i, are shown in braces. Information on the
number of fish released or rereleased appears to the left of the line and the number of first recaptures is
to the right.
Release-recapture data (Ry, and m;)
Total Never
recaptured  recaptured
Release 1 2 3 4 5 6 Tein ch. =Tcih
Initial
release {1} 29,000 1,104(33)  247(10) 1,832(57) 571(25) 641(36) 4,395 24,605
Rercleases
at dam 2 {11} 1,071 13(0) 75(4) 19(1) 29(1) 136 935
Rereleases {101} 237 17(1) 4(0) 9(0) 30 207
atdam 3 {111} 13 0(0) 0(0) 1(0) 1 12
Rereleases {1001} 1775 48(2) 49(1) 97 1,678
atdam 4 {1101} 71 1(0) 2(0) 3 68
{1011} 16 1(0) 1(0) 2 14
Rereleases {10001} 546 24(1) 24 522
atdam 5 {11001} 18 0(0) 0 18
{10101} 4 0(0) 0 4
{10011} 46 2(0) 2 4
{11011} 1 0(0) 0 1
{10111} 1 0(0) 0 1

Tables 1.5 and 1.6 show reduced m-arrays for treatment and control fish, respectively,
for the general numerical example. Also shown in these tables are row totals 7;, column totals
my, and a statistic z; (z; = the number of fish captured above and below, but not at, dam j).
Of course, the specific notation includes ¢ and ¢ in the subscripts to denote group. The m,,,
2,5, and r; for v = ¢ or ¢ are not necessary aspects of the m-array; however, it is useful to show
them there (they are redundant, given the R,; and m,,; information).
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Whereas the full m-array presents Ry, and myg, the reduced m-array presents only the
sums Ry; =Ry, = ¥} Ryp, and my; =My, = Y My for v = £ or c. For example, in Table 1.5,
h h

Rig = 235 = 224 + 11 = Riz 101} + Res ana}s
and
Myzq = 19 + 1 = myas 11y + Myesg (111}

Losses on capture may conveniently be shown in parentheses but are not necessary; we omit
them from Tables 1.5-1.6.

1.3.3. Four Major Protocols

A technical team planning an experiment to estimate survival due to some treatment
(e.g., passage over a spillway) must choose the basic experimental approach to be used in the
field. We have identified four broad alternatives and have termed them “protocols.” Each
protocol is discussed in terms of the type of marking and recapture method and amount of
information on the specific capture history of individual fish. We will make extensive use of
the general numerical example introduced in Section 1.3.2 to aid in understanding these
important concepts.

Table 1.5. — Reduced release-recapture data-and summary statistics for the treatment group. Shown are
the totals, by release occasion, over subcohorts. This table is the reduced m-array and is a condensation
of the information given in Table 1.3.

Treatment recapture data at dam j, my

Dam Releases

i Ry; j=2 3 4 6 i
1 30,000 1,029 238 1,669 590 4,075
2 1,000 11 73 27 128
3 235 20 5 32
4 1,677 50 93
5 590 19 19

Totals my 1,029 249 1,762 691 4,347

zy 3,046 2,925 1,195 0

2The sum of elements in the shaded area is n,5 = 616.
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Table 1.6. - Reduced release-recapture data and summary statistics for the control group. Shown are
the totals, by release occasion, over subcohorts. This table is the reduced m-array and is a condensation
of the information given in Table 1.4.

Control recapture data, mg;

Dam Releases
i Ry j=2 3
XXX
1 29,000 1,104 247 832 6419‘ 4,395
2 1,071 13 m 36
3 250
4 1,862 50 52 102
5 616 26 26
Totals my 1,104 1,924 644 758 4,690

A 3,291 § i}ﬁ% 1,274 732 0
X X X

2The sum of elements in the shaded area is Z.s = 3,167.

1.3.3.1. First capture history protocol. — Under the first capture history protocol, marked
fish are released at dam 1 and are removed upon first recapture. Removal can be physical, or
another mark or fin clip can be added (and the fish then released) that allows future recap-
tures to be ignored. Thus, removal data are multinomial, as each fish can be recaptured
independently only at a single downstream dam (i.e., at one of dams 2, 3, ..., k) or “never.”

Only batch marks are required to distinguish the two releases (e.g., the R;; and R, fish
must have different batch marks). First capture history protocol data can be summarized as a
CH matrix. Table 1.7 provides an example of a study involving six dams (k = 6).

Table 1.7. — Capture history matrix for the general numerical example under the first capture history
protocol. Negative values indicate that fish were removed upon recapture.

Dam of Number recaptured
recapture
Capture history j t c
110000 2 -1,029 -1,104
101000 3 -238 -247
100100 4 -1,669 -1,832
100010 5 -549 ST
100001 6 -590 -641

100000 never 25,925 24,605
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The CH matrix shows that most fish were released and never recaptured; see capture
history A = {100000}. The minus sign preceding the numbers recaptured in the treatment and
control groups denotes the fish that were removed. All fish recaptured were removed; none
were rereleased. All the data representations (the CH matrix, full and reduced m-arrays) are
essentially equivalent. Only data on first recaptures (that are then removed) are available for
analysis. Fish recaptured at the last dam (6 in this example, k in general) need not be removed
as no further sampling will be conducted downstream.

The reduced m-array is a more convenient summary of data under this simple protocol
(Table 1.8). Note that these data include only the first row of Tables 1.3 and 1.5 for the treat-
ment group and Tables 1.4 and 1.6 for the control group because fish are not rereleased after
capture.

The first capture history protocol allows only the treatment survival rate S to be
estimated as an individual parameter. (Products of the other parameters [i.e., the ¢; and p;]
are estimable.) Limited tests of important assumptions are possible. Overall, the first capture
history protocol is simple and useful if the effect of the treatment is acute, and if proper repli-
cation is included in the experimental design (see Part 4 for a discussion of replication).

1.3.3.2. Unknown capture history protocol. — In most fish survival experiments con-
ducted in the Columbia River to date, capture histories of individual fish are unknown. Fish
are given a batch mark, but the fish are not removed upon recapture; rather they are
rereleased. Therefore, a particular fish may be released and recaptured two or more times,
but one has no way of knowing its capture history. The resulting recapture data are not multi-
nomial, and information needed to complete the CH matrix is not available with this protocol.
The unknown capture history protocol, consequently, has several disadvantages, especially as
the recapture probabilities (p;) increase. The data are not amenable to any exact statistical
analysis. However, when capture probabilities are low, the unknown capture history protocol
is a potential alternative if there is sufficient empirical replication.

Unknown capture history data include the total number of fish, by treatment and control
group, recaptured at dam j (i.e., my; =my; and me;=m,;, j = 2, ..., 6 in the general numerical
example). The data are a pooling of recaptures over different capture histories; thus, some
important summary statistics cannot be computed (e.g., r,;, the total number of distinct fish

Table 1.8. — Data from the general numerical example under the first capture history protocol for
treatment and control groups. The m-array is reduced to a single row for each group because no
recaptured fish are rereleased; instead they are removed.

Number recaptured and removed at dam j, my;

Releases
Group R,; j=2 3 4 M [
t 30,000 1,029 238 1,669 549 590

c 29,000 1,104 247 1,832 57 641
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recaptured from the initial release). Table 1.9 shows the data that would result from the gen-
eral numerical example if this protocol had been used. The recapture data shown for this pro-
tocol are merely column totals from Tables 1.5 and 1.6 for treatment and control fish, respec-
tively. The availability only of totals represents a loss of information and prevents an exact sta-
tistical analysis.

1.3.3.3. Complete capture history protocol. — In the complete capture history protocol,
each fish bears a unique mark. The use of unique marks allows the capture history of each
fish to be known and used in the analysis. Fewer assumptions are required, additional statisti-
cal tests about assumptions can be made, and flexibility in the estimation of parameters is
increased. The use of unique marks will become increasingly feasible as new technologies
develop.

We believe that the complete capture history protocol is often superior to the other
three protocols because it provides more tests of key assumptions and provides flexibility in
the analysis. This protocol should be given full consideration in the design of future studies.
The data derived from all other protocols are special cases of this general approach. The
advantages of the complete capture history protocol increase as the recapture rates at down-
stream dams increase. The CH matrix for the complete capture history protocol is given in
Table 1.1, including the fish lost on capture. The full m-arrays are shown in Tables 1.3 and
1.4, and the reduced m-arrays in Tables 1.5 and 1.6.

1.3.3.4. Partial capture history protocol. — Under the partial capture history protocol we
consider two useful methods that have many advantages in the field and produce adequate
data for statistical analysis. A limitation of this protocol is that the application of a second
batch mark is required, and it is crucial that this handling not affect survival. The partial cap-
ture history protocol involves the use of site-specific marks at one or more downstream dams
(ie., 2, ..., k-1) in conjunction with “removal” after the maximum number of marks are
applied. The use of site-specific marks differs from use of unique marks on fish initially
released at dam 1. We develop only two possible partial capture history protocols: scheme A
and scheme B.

Table 1.9. - Data from the general numerical example under the unknown capture history protocol for
treatment and control groups. Capture histories are pooled and necessitate approximate analysis
methods. Losses on capture are shown in parentheses.

Number recaptured at dam j

Releases .
Group R,; j=2 3 4 5 6
t 30,000 1,029(33) 249(14) 1,762(85) 616(26) 691(32)

¢ 29,000 1,104(33) 260(10) 1,924(62) 644(28) 758(39)
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In scheme A, treatment and control fish are batch-marked and then released at dam 1,
as in the first and unknown capture history protocols. However, upon first recapture, each
fish is given a second mark that is specific to that particular dam. If a fish is recaptured a
second time, it is removed (either physically removed or a fin is clipped or a third mark is
added to indicate its removal). A possible capture history with scheme A is {1001010}, which
indicates a fish marked initially at dam 1, recaptured (and released) at dam 4 after being given
an additional mark specific to dam 4, and recaptured and removed at dam 6 (and therefore
unavailable for recapture at dam 7). Thus, only partial capture histories are available under
this protocol (data cannot be gathered on fish recaptured more than twice).

Data under scheme A contain much of the information available from data under the
complete capture history protocol, especially if capture probabilities are low. Marking equip-
ment must be available at each downstream dam, but simple batch marks can be used.

The CH matrix for the general numerical example under scheme A is shown in Table
1.10, including fish lost on capture. Note that, unlike the CH matrix for complete capture his-

Table 1.10. - CH matrix for the general numerical example under the partial capture
history protocol, scheme A.

Number recaptured
Capture history t c
100000 25,925 24,605
100001 563 605
100001 27 -36
100010 508 522
100010 <23 =25
100011 -18 24
100100 1,500 1,678
100100 -81 -57
100101 -48 -49
100110 40 48
101000 193 207
101000 -14 -10
101001 -5 -9
101010 -7 -4
101100 -19 -17
110000 872 935
110000 -29 -33
110001 -27 -29
110010 -17 -19
110100 -73 <75

111000 -11 -13




1.3. RELEASE-RECAPTURE PROTOCOLS AND DATA 41

histories, no fish under scheme A are recaptured more than twice (i.c., there are no more
than three ones in a capture history #: a row of the CH matrix). The m-arrays are shown in
Table 1.11. For scheme A, the full and reduced m-arrays are identical, ie., all releases at a
given dam have the same capture history to that point, so there are no subcohorts based on
capture histories.

In scheme B, it is assumed that treatment and control fish with distinguishing batch
marks are simultaneously released at dam 1. All fish recaptured at the second dam (dam 2)
are given a second mark to indicate that they were recaptured and then rereleased. However,
all fish recaptured at dams 3, 4, ..., k are removed from the population. This scheme requires
additional marking at only one downstream dam (dam 2). In this respect, scheme B is logis-
tically better than scheme A, but the resulting data contain less information than those col-
lected in scheme A. The CH matrix for scheme B is shown in Table 1.12, and the reduced m-
arrays are shown in Table 1.13. The data are mostly removals and, therefore, similar to the
data from the first capture history protocol (see Table 1.8).

Although some information is lost, we believe scheme B represents an excellent protocol
that should be considered further in the design of future experiments. A disadvantage is the
potential effect of handling and marking on subsequent survival. Scheme B represents a logis-
tically reasonable protocol and scheme A is a statistically reasonable protocol.

Table 1.11. - The m-array for the general numerical example under the partial capture history protocol,

scheme A.
Number recaptured at dam j, my;
Releases
Group i Ry j=2 3 4 S 6
t 1 30,000 1,029 238 1,669 549 590
2 1,000 11 73 17 27
3 224 19 7 5
4 1,588 40 48
5 526 18
c 1 29,000 1,104 247 1,832 57 641
2 2,071 13 75 19 29
3 237 17 4 9
4 1,775 48 49
5 546 24
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Table 1.12. — The CH matrix for the general numerical example under the partial capture
history protocol, scheme B.

Number recaptured
Capture history ¢ c
100000 25,925 24,605
100001 -590 -641
100010 -549 -7
100100 -1,669 -1,832
101000 -238 =247
110000 872 935
110000 -29 -33
110001 =27 -29
110010 -17 -19
110100 -73 -75

111000 -11 -13

Table 1.13. — The m-array for the general numerical example under the partial capture history protocol,

scheme B.
Number recaptured at dam j, my;
Releases
Group i R j=2 3 4 5 6
t 1 30,000 1,029 238 1,669 549 590
2 1,000 11 73 17 27
c 1 29,000 1,104 247 1,832 57 641
2 1,071 13 75 19 29

1.4. Release-Recapture Modeling Concepts, Notation, and Assumptions

In Chapter 1.3 we introduced some of the concepts regarding release-recapture, includ-
ing ways to display the data and different study protocols (which produce different amounts of
data). Here we elaborate on the subject by considering concepts essential to the modeling of
such data. We also present an overview of the necessary notation required to represent sym-
bolically the data and probability models for the data. Finally, we introduce the philosophy
that guides our data modeling and analysis efforts for this class of fish survival experiments.
We assume that the complete capture history protocol is the starting point because it is the
most general data collection and modeling case; all other protocols should be viewed as special
cases of the complete capture history protocol. '
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1.4.1. Introduction to Release-Recapture Concepts

Release-recapture is used widely to study animal survival processes. In fisheries, it is
used more often to estimate population sizes. A cohort of R; marked animals is released and
then a subsequent sampling process is used to catch (sample) the marked survivors. These
survivors may be rereleased at the site (or time) of capture. Consequently, in typical capture-
recapture studies (e.g., Jolly 1965), an individual can be captured at several sites. Such multi-
ple recaptures lead to the idea of a capture history, which we introduced in Section 1.3.2.
Although capture histories provide a convenient way to record data and enter it for computer
analysis, they are not convenient for modeling though they have been so used. Capture his-
tories have been used as the basis of models and subsequent data analysis in the log-linear
approach (e.g., Cormack 1979, 1981). Crosbie and Manly (1985) also provided an analysis
method based on the capture history representation. We base our models on an alternative
conceptualization of the process, as presented by Brownie et al. (1985:170-175).

The first key concept is that one should model the recapture process and then analyze
the recapture data, conditional on the known number of releases at each release site (or time).
A probability model for the data may then depend on capture history at the time of release. In
principle, the released fish at any recapture dam can represent a mix of “new” and recaptured
fish. The critical question is whether or not such a mixed cohort meets the assumptions
needed for a meaningful data analysis.

The second key concept is that release and recapture are paired; this concept is the
essence of release-recapture. Each release of a fish is an experiment in itself. Assume a fish
is released at dam 1 and recaptured at dam 3 (but not seen at dam 2). One now knows that
the fish survived between dams 1 and 3. The rerelease of the fish at dam 3 starts another sur-
vival trial. One conditions (principle 1) on that release and again waits to see if that fish is
recaptured.

Consider the capture history # = {101011} for a study with six dams. An equivalent
representation for this capture history follows.

Release First recapture after release time i
_Occasioni 2 3 4 3 6
1 (released) 0 1
2
3 (released) 0 1
4
5 (released) 1

This type of representation of data leads to the m-array.

The second concept states that the model is concerned only with the first recapture after
any release. The data are represented as a series of linked release-recaptures. Conditioning
on release and then modeling first-only recaptures are the keys to simplified modeling of
release-recapture data. Throughout this monograph, recapture (or capture) of marked fish
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refers to the first recapture after a release. In this manner, releases and subsequent recap-
tures are uniquely paired (unless the fish is never observed again). Under the unknown cap-
ture history protocol, this pairing still exists in principle, but information about it is not avail-
able.

The recognition of different levels of data leads to additional terminology. The “cohort”
is the focus of building cither single or multiple release-recapture data sets. A cohort is a
known number of animals released at a given site (or time). Given such a definition of a
cohort, then, each animal in a cohort is either recaptured once or never observed again. Upon
(first) recapture, if the animal is (re)released, it automatically becomes a member of a
different study cohort.

The subcohort is a partition of a cohort. Suppose 500 fish are recaptured at dam 3 and
480 are released as cohort 3, Rs = 480 (20 were lost on capture). Those fish can have one of
two possible capture histories when they are released at dam 3:

h Rg,
101 460
111 20

Total 480 .

The numbers of fish released with each capture history are defined as a subcohort of Rs.
Therefore, in this example, cohort 3 has two subcohorts of sizes 460 and 20.

It is possible to define subcohorts on another basis, such as a fish’s sex or size. The rea-
son for distinguishing subcohorts within a cohort is that the subcohort data are useful for tests
of assumptions. One can test that the capture and survival rates are not affected by the factors
(especially capture history) defining subcohorts.

A data set is a collection of cohorts (releases) and the subsequent (first) recapture data
from each cohort. Much of the capture-recapture literature deals with the analysis of only one
data set. However, many important questions that can be investigated by release-recapture
require collecting at least two related data sets (e.g., treatment-control, male-female, age-
classes, or different locations; see Manly 1985 for numerous specific examples). Thus, one
must be able to cope with the analyses of multiple, related release-recapture data consisting of
the following levels:

(1)  Vrelease-recapture data sets (groups), e.g., V' = 2 for ¢ and c;
(2) k- I cohorts within each data set (for k dams);

(3) subcohorts within each cohort;

(4) first recaptures from each subcohort.

(Again, we note that some of these features vanish under protocols other than the complete
capture history protocol.)
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One final point regarding concepts: a capture history compiled at time of release is
defined only with respect to the previous capture sites. Confusion can be avoided and simpler
notation can be used when this is understood. Thus, if 4 represents a capture history at site i,
then h has exactly i components, each component being either a zero or a one.

1.4.2. Release-Recapture Notation

We have already introduced most of our notation. We now present it in greater detail.
Its comprehension should be facilitated if the previous ideas are kept in mind.

14.2.1. Notation for data. — Notation for data must allow one to distinguish levels of
data: data sets (groups), cohorts, subcohorts, and first recaptures given releases. The follow-
ing symbols are fundamental (see also the Glossary for notation):

k The number of release-recapture sites or times;

R; Known number released at dam i, i = 1, ..., k-1;

mg;  The number of fish recaptured (for the first time) at site j from the cohort released at
sited,j =i+ 1,..,k.

These basic symbols must be elaborated upon to allow for subcohorts and multiple data
groups. Elaboration is in the form of additional subscripts — v for data groups and % for sub-
cohorts:

Ry is the number of released animals in group v and subcohort % at site i.

Moy is the corresponding number of recaptures at site j for Rz,

When only one data set is involved, the subscript v can be dropped. Thus, Ry and myy, can
arise. When results are pooled over all subcohorts, the 4 is dropped and R,; and M are used.
We sometimes replace a subscript with a dot (.) to denote summation (i.c., “pooling”) over
that subscript. Thus, R,; is equivalent to R,;, although we prefer the simpler notation of R,; in
this situation.

The subscripts always appear in the same order: data group v, release site i, recapture
site j, and subcohort 4. However, all four subscript levels do not always occur (e.g., R never
has subscript j). Various subscripts tend especially to be omitted in summary statistics.

In addition to R; and m;; (or Ry, and m,y,), several summary statistics (i.e., of the m;;)
are commonly used. These statistics are sums of the recaptures (i.e., of the my;).
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r The total number of the R; that are recaptured again; a row total, r; = ¥ m,;.
J
m;  The total number of marked animals caught at site j; a column total, m; = Y m;;.
i

T; The total number of captures at sites j, j+1, .., k from releases in cohorts R;, ..., Rj;
(hence released prior to site j).

z;  The total number of captures at sites j+1, ..., k from releases in cohorts Ry, ..., R;;.

Many variations of these summary statistics can occur. In particular, these are ry, 7.
(in the case of treatment and control groups and recaptures by subcohort), and r (one group
only). The quantities m,;, T,;, and z,; also arise, along with m j;, T';, and z; (Where summation
is over groups). Because there are too many combinations to define explicitly, we imposed a
logic on our notation in regard to the order and meaning of subscripts.

Summary statistics can be computed as various totals of the basic data: myu;v = 1, ..,
‘Vii=1,.,k-L;j=i+1,.,kandh = 1, .., H,. The symbol H,; represents the number of
subcohorts in cohort i, data group v. For example,

J-1 k

;=% Y mup, j=2,.,k-1;
t=1n=75+1

ZkEO,

Ti=m; + 24,

7}‘,,_1 =2 + Ty

Although there are many other relationships, the reader need not learn them. Program
RELEASE computes the necessary summary statistics.

We selected our basic notation to be as consistent as possible with that used in the gen-
eral capture-recapture literature, e.g., that used by Seber (1982). Our results are applicable to
the analysis of Jolly-Seber data with respect to inferences about survival rates. The full
analysis of Jolly-Seber data involves estimation of population size, which requires capturing
unmarked animals and marking and releasing them. The extra notation needed is primarily u;,
the number of unmarked animals caught at site (or time) i; the notation u,;, and possibly s,
could also be used. We do not use “u” in our notation, thereby making it available for use in
extensions of results to the general open population capture-recapture situation (see, e.g.,
Chapter 8.3). :
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Table 1.14. - Symbolic form of the full m-array representation of a single release-recapture data set (see
Table 1.3 for an example).
Release-recapture data at dam j
Total Never
1 2 3 4 5 recaptured recaptured
h={1} Ry, Mgy M3y Mun My Iy Ry -ry
k= {11} Ran Man Man Mgy T2n Ran-ran
k= {111} Ry Mayn Masn Fan Ray-ran
h = {101} Ry Myn Masn I Ry -ra
h = {1111} Rg My e Ro-ra
h= {1011} th Mesn 1Y R‘h'r‘h
k= {1101} Rth My s R.h-r‘h
h = {1001} th My Iy R‘h-r!h

Tabular forms for presenting data are given in Section 1.3.2. These forms (e.g., Tables
1.3 and 1.5) are directly related to our notation. There is a full me-array for each treatment
group. This full m-array presents the data at the level of subcohorts, i.c., the R,y and subse-
quent My, This form is shown in Table 1.14. Pooling over subcohorts within each cohort
gives the data in the reduced m-array, which we usually merely refer to as the m-array (see
Table 1.15). That data representation is the most common one used in capture-recapture stu-
dies; however, its use results in a loss of all the information (for testing assumptions) that is

contained in the subcohort data.

Table 1.15. — Symbolic form of the reduced m-array representation of a single release-recapture data set

(see Table 1.5 for an example).

Recapture data at dam j
Releases at Total
dam i 2 3 4 5 recaptured
Ry mis mys Mmie mys n
R, Moy mqg Mo 12
R, my Mas T3
R, My Ty
Summary mq my m, ms
statistics Zq - Z, 25
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1.4.2.2. Notation for parameters. — Only two types of parameters are used in release-
recapture models: survival rates and capture probabilities. The generic symbols for dam-to-
dam survival rate and capture probability at a given dam are ¢ and p, respectively. Also, 1-¢
represents mortality rate and ¢ = 1 -p = probability an animal is not captured. Precise
definitions follow:

¢  the conditional probability of a fish surviving from release at site i to site i + 1; and
p;  the conditional probability of a fish being captured at site i given that it is alive at (i.e.,
arrives alive at) site i.

Note the conditional nature of both parameters. Survival, ¢;, applies only to fish alive at site i.
Also, ¢ is unrelated to whether or not the fish was captured at sites i ori + 1. Hence, survival
and capture processes are cvaluated as separate parameters.

The subscripts on these parameters can be expanded in accordance with conventions dis-
cussed previously. For example, we also have
buis Pvi when survival and capture rates vary by data group (e.g,v =torc).
& represents a common survival rate from site i to i + 1 for all treatment groups
(i.e., ¢ = &, for all v). '
Similarly, we use p; when the parameters py; do not vary by treatment v. The use of ¢; or p; is
equivalent to ¢; or p;, except that the latter notation is used only rarely.

Survival and capture probability parameters often enter the models as complicated func-
tions. Therefore, we define other parameters as functions of ¢; and p;; in particular,

Ai = ¢5(Pi+1 + (Ii+1'\i+1) ’ i= 1’ sy k-1 ’

Xe = 0 (by definition ) ,
and

Di

= —_—, i=2,...,k‘1.
pi t @ik

Ts

We note that \; = the probability that a fish released at dam i will be recaptured; thus,

E(r; | R) = Rix. Also, 7; is the proportion of fish captured at dam i of those released prior to
my

dam i and captured at dams i, i + 1, ., k. Thus,; = E T |

The focus of this monograph is on the estimation of treatment effect S. Often, S
= ¢y1/d.1 and, if the treatment has a detrimental effect on survival, S < 1 and can be con-
sidered as a probability. In other cases the treatment may enhance survival and, therefore, S
> 1. If the effect of the treatment extends downstream to dam 3, then S = (fe1dh2)/(Be19c2)-
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The treatment effect can be partitioned under some sampling protocols. For example,
S1 = ¢1/¢e1 and So = ¢y2/4.o; thus, the overall treatment effect is S = S;5,. Other specific
definitions of S are possible depending on the application and postulated effect of the treat-
ment on the marked population. The important point is that S is a general measure of a treat-
ment effect.

1.4.3. Release-Recapture Models

14.3.1. Modeling approach. — There are two conceptual aspects to the models used
here: (1) the structure of the expected number of recaptures given the known releases, and
(2) the specification of the nature of the random variation of the recaptures given their
expected values. The structural aspects of the expectations are usually readily comprehended;
however, a complete model is necessary for purposes of sound scientific inference. The com-
plete model is a specification of the probability distribution of the recaptures my; given
releases R;.

Numerous modeling approaches have been used as a basis for the analysis of capture
data (e.g., Cormack 1979). Conditional on the releases R; and, given some specific assump-
tions, the recaptures m;;,1, .., My are multinomial random variables. Multinomial models
provide the most convenient approach when the emphasis is on estimating survival rates.
Also, multinomial models provide a relatively easy and unified framework for theory develop-
ment (e.g., Brownie et al. 1985:170-175; Burnham, unpublished report, 1987).

The most critical aspect of modeling release-recapture data is the specification of the
expected values of the recaptures m;; given the releases. Symbolically, this expectation is

E(my; | Ry) = Rimy

Thus, m;; = E (mg; | R;)/R;, j=i + 1, ..., k is the probability that a fish released at site i will be
recaptured at site j. By virtue of our definition of a recapture as meaning the first recapture
aftter release, a fish released at site i is either recaptured at exactly one downstream site (site i
+ L ori +2,..,0rk) or it is never observed again. We let ); = Miis1l + Migyo +..+ my; then
1-X = Pr{a fish released at site i is never observed again}. Thus, after release at site i, the
fish experiences exactly one of k -i + 1 mutually exclusive fates. Given the assumptions of
statistical independence for the fates of released fish and that the same parameters m; apply to
every fish, then the m;; given R; are multinomial random variables. The general mathematical
form of the multinomial probability distribution for these recapture data is

R; u m -n
...,,,,.kR,._,,.] L_Hl(vr;j) ’](1-»)"‘* .

=l.+

Pr{m;s 1, .., mg | R;} = Miga1



50 PART 1. INTRODUCTION

Multinomial models are completely specified by giving (hypothesizing) the expected values of
the m,; given the releases R;. Thus, by adopting this framework, we reduce the modeling to
specification of the ;.

1.4.3.2. Model structures. — By model structure, we mean the expressions for the m; in
terms of survival (¢) and capture (p) probabilities. The estimators of the survival and capture
rates are determined by the model structure. The multinomial sampling distribution com-
ponent of the models really only determines (theoretical) sampling variances and covariances.
If sampling variances are obtained from replicate releases, the only critical part of the model is
the structure assumed for the m; = E(my; | R;)/R;.

A convenient initial model structure to consider is that of assuming parameters to be
time-specific only. Then, for example,

Mg+l = (#pis1) 5
Tiiv2 = ($idiv1)(Fis1Dis2) 5

Tiies = (BiGiv1)(Bir1Gi42)GirDiss) -

Consider the interpretation of 7;;, 2, which is the probability that a fish released at site i will
not be caught at site i + 1 but will be caught at site i + 2. The probability of survival from site
itoi + 1is¢;, while g;,1 = 1 - p;,; is the probability that the fish is not caught at site i + 1
given that it survives to site i + 1. Next, the fish must survive from site i + 1toi + 2 (proba-
bility = ¢y,1) and then be caught (probability = p;.2). It is worth noting that presence in the
released cohort is represented by the product (¢ig:.1), whereas removal from the released
cohort is represented by the product (¢p;,1). All the release-recapture models used here
have this basic structure: the m; are products of ($ngn.1) terms, n =i, .., j - 2, and a final
(¢;4p;) term. What distinguishes different models is how these survival and capture probabil-
ity parameters depend on treatment and release or recapture site.

Table 1.15 shows the symbolic form of the reduced m-array for a single release-
recapture data set. Any model for such data can be represented by an analogous table giving
the E(m;; | R;) = Rim; (or giving just the ;). For example, Table 1.16 gives the basic model
structure used as our starting point. This model is essentially the Jolly-Seber model (Jolly
1965; Seber 1965). The parentheses enclosing pairs of ¢g or ¢p are shown only to emphasize
the way survival from site i to i + 1 and being captured or not captured at site i + 1 always
appear together in the model structure. Seber (1982) used the symbols o and g; to denote the
products ¢;q; .1 and ¢;p; .1, respectively.
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Table 1.16. — The Jolly-Seber (time-specific parameters) model structure for the symbolic data of Table

1.15.
Expected number of recaptures, E(rm;; | R), at dam j
Releases
atdami i=2 3 4 5
Ry Ri(¢wp2) Ri(192)(¢p3) R1($193)(293)(¢04) Ri($192)(6:95)(¢5q 4)(¢£5)
R, Ra(¢23) Ri(:9:)(#00) Ry(6:93)(8:9.)(d2s)
R, Ry(¢pd) Ry(#sq)(dws)
R, R (¢ps)

1.4.4. Assumptions

The numerous assumptions involved in making inferences from release-recapture data
vary in their importance and in terms of what the investigator can do to satisfy them. We next
present the necessary assumptions by type of assumption, and order most-to-least important

within type of assumption.

Assumptions 1-6 relate to study planning, field procedures, and generality of the desired

inferences.

(1) The test fish used are representative of the population of fish about which one seeks

mortality information.
(2) Test conditions are representative of the conditions of interest.

(3) Treatment and control fish are biologically identical prior to release at dam 1. A strong
version of assumption 3 is that initial handling, marking, and holding do not affect sur-

vival rate.
(4) The numbers of fish released are exactly known.

(5) Marking (tagging) is accurate; there are no mark (tag) losses and no misread marks

(tags).

(6) All releases and recaptures occur in brief time-intervals, and recaptured fish are

released immediately,

Assumptions 7-8 relate to the stochastic component of the models.

(7)  The fate of each individual fish, after any known release, is independent of the fate of

any other fish,
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(8) With multiple lots (or other replication), the data are statistically independent over lots.
Assumptions 9-12 relate to model structure.

(9) Statistical analyses of the data are based on the correct model.
(10) Treatment and control fish move downstream together.

(11) Captured fish that are rereleased have the same subsequent survival and capture rates as
fish alive at that site which were not caught, i.c., capture and rerelease do not affect their
subsequent survival or recapture.

(12) All fish (in the study) of an identifiable class (e.g., treatment or control, or size, or repli-
cate) have the same survival and capture probabilities; this is an assumption of parame-
ter homogeneity.

It is difficult to specify a set of assumptions that suffice to cover all the protocols and
intended inferences presented here. In particular, stronger assumptions are required for esti-
mation of the absolute survival rates ¢ than for the treatment effect S = ¢ /¢,. Note particu-
larly that a multiplicative bias that equally affects @, and @, has no effect on S. We next discuss
the role of assumptions from this dual perspective. :

No amount or sophistication of data analysis can salvage valid results from an invalid
design. Also, statistical inferences cannot validly extend beyond the scope of the design.
Assumptions 1 and 2 relate to this point; they are virtually self-evident, but worth bearing in
mind. For example, if one wants to know something about a species of fish, then that species
should be used as the test fish. Other factors to consider include genetic strain, size, general
condition, and so forth. Test conditions (flow, turbine type, power settings, dam design) are
also relevant. These types of studies are usually limited to one dam, and often one turbine, at
a time. There is little or no random selection of test conditions, nor can there be. That does
not affect models or analyses presented here. Assumptions 1 and 2 really just specify the limits
of valid statistical inferences regarding fish survival rates and treatment effects. Inferences
about salmon or conditions other than the test conditions must be justified on other than sta-
tistical grounds.

Assumptions 3, 4, and 5, and to some extent assumption 6, can be influenced by the
investigator by the use of careful field procedures. Our reading of the fisheries literature
shows that fisheries scientists are well aware of these assumptions; and that these scientists are
able to do an excellent job of meeting assumptions 3-6, to the extent they can be met.

For the purposes of making inferences about treatment effect(s), a weak version of
assumption 3 suffices: comparability of treatment and control fish when initially released. At
this level assumption 3 is met, basically, by random assignment of fish to treatment groups
and lots, and identical handling procedures for all treatment groups (often just treatment and
control fish). Handling may affect the fish and their survival rates ¢. If absolute survival rates
are a study objective, a strengthened assumption 3 is needed: fish preparation and holding
procedures do not affect survival rates. Potentially, assumptions 1 and 3 overlap. The com-
mon point being made is that S, or ¢, is assumed to be the same for the released and wild fish.
If the experimental fish are not representative a priori, this assumption fails. '
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It is critical to know the numbers of live, healthy fish released (assumption 4). Due to
handling mortality or natural mortality, the release number R may be less than the number
marked and placed in holding facilities. Accurate marking is also critical. Marks must not be
lost or become unreadable. Assumption 5 points out that recapture data must be recorded
accurately. This assumption is required to obtain unbiased estimates of absolute survival rates
¢ and capture rates p. However, S remains unbiased if the rates of tag loss (including, e.g.,
unreadable freeze-brands) are equal for treatment and control groups.

Assumption 6 relates to fish being recaptured over several days or weeks. In capture-
recapture one should release all fish at a given dam (or occasion) simultaneously. Similarly,
all recaptures at a given dam (or occasion) should occur simultaneously. When these condi-
tions are met, all fish have been exposed to mortality risks for the same time interval, and the
assumption of homogeneous survival and capture rates, by treatment group, is tenable. This
assumption may fail when, for example, some control fish move from dam 1 to dam 2 in 1
week and others take 2 weeks. If survival rates depend only on distance moved, this movement
time differential is not a problem; if survival rates depend strongly on elapsed time (as well as,
or rather than, distance moved), however, then ¢ (absolute survival rate) is affected. At dam 1,
fish should be released as quickly as possible. After the initial release the only control the
investigator has is the spatial allocation of recapture effort. In terms of meeting assumption 6,
it is best to concentrate recapture effort at dam 2, rather than farther downriver.

Assumption 6 can be weakened for purposes of estimating treatment effects; it suffices
to have the same time distribution of recaptures and rereleases for all treatment groups
(assumption 10). Thus, inferences about S require assumption 10 but not assumption 6.

Although much of the literature on the type of large-scale experiments we are address-
ing is unpublished, a number of reports nonetheless provide excellent information on, and
examples of, careful field procedures. Useful studies include the following: Cramer and
Oligher (1964), Semple (unpublished report, 1979), Olson and Kaczynski (unpublished report,
1980), Turbak et al. (unpublished report, 1981), and McKenzie et al. (unpublished report,
1984).

There is little the investigator can do about assumptions 7 and 8. Assumption 7 implies
assumption 8, but not vice versa. Assumption 7 is needed to justify the multinomial probability
models used herein. Assumption 8 suffices to justify the empirical estimators of variance in
Part 4. Failure of assumption 7 has no serious effects on bias of any estimators but can seri-
ously affect variances. Fish fates are expected to be independent. Independence fails if clus-
ters of fish stay together and react together. This positive dependence effectively reduces
actual sample sizes and increases actual variances (as compared to theoretical variances). We
doubt that assumptions 7 or, especially, 8 are seriously violated.

Failure of assumptions 9, 10, 11, and 12 can seriously affect estimates of parameters. We
focus here on these assumptions because they can be investigated by data analysis. Assump-
tion 9 is general but worth stating because it is the essence of all statistical inference: the
assumed statistical model is correct. By statistical model, we mean both the structural and sto-
chastic components. Assumption 7 (independence) and assumption 12 (homogeneity) imply
the multinomial model of recaptures given releases. Assumption 12 by itself implies the
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structural component of the models we use.

Assumption 10 can be examined on the basis of records of recaptures by day at any dam,
If the time distribution of captures is the same for treatment and control fish, the results of the
experiment are more likely to be valid. Differential movement of treatment and control fish
need not invalidate results, although it may require a more complex model for data analysis. If
any differential migration is a result of treatment, it is probably unavoidable. It is important to
conduct the study so that the design and field procedures do not lead to such differences in
movement between treatment versus control fish.

Assumption 11 relates to, among other things, handling mortality (e.g., Arnason and
Mills, in press) and behavioral response to capture (Nichols et al. 1984). If capture and
handling cause mortality, they will bias estimates of ¢ (and possibly S). In general, capture and
release at dam i could affect the next recapture. If only capture probabilities are affected, gen-
eralized models can allow adjustment for this effect (e.g., Nichols et al. 1984). However, if
assumption 11 is violated, it is most likely the survival rate after release that is affected. There
is no analytic way to compensate for a handling effect on survival rate S and still use all the
data for the types of experiments considered here. The solution to the problem, at least with
respect to estimating S, is to use the first capture history protocol.

Assumption 12 is violated if fish used in the study vary a priori with respect to survival
and capture rates. Such heterogeneity in parameter values is likely to happen to some extent.
For example, fish size may influence survival ¢ and treatment effect S. If variation in fish size
is modest, such heterogeneity causes no problems. That is, the analysis methods have some
robustness to heterogeneity (see Nichols et al. 1982; Pollock and Raveling 1982). Studies
should be designed to ensure that assumption 12 is true; the investigator should consider stra-
tifying by fish size or eliminating extremes of fish size and using one strain (source) of fish for
the entire study, or at least stratifying treatment and control lots by strain. Heterogeneity can
result in actual variances exceeding estimated theoretical variances.

1.4.5. Data Analysis Philosophy

Our specification of assumption 9 as simply “the correct model is used” is motivated by
our modeling and data analysis philosophy: start with a model sufficiently general so that it is
likely to be true for any given experiment of the type of experiments being considered. That
umbrella model is expected to be too general. Consequently, one then selects as part of the
data analysis process a suitable special case of the general model that best fits one’s specific
experiment.

Historically, the approach to capture-recapture data analysis was to assume a specific
model and use it, often with no testing of assumptions about model fit. Then one’s assump-
tions about the model could be stated as specific assumptions about survival rates and capture
probabilities. For the methods presented here, we assume that the Jolly-Seber model applies
to each treatment group. This assumption simply means that for all treatment groups, survival
and capture are assumed to be time-specific only, with no age, capture history, or handling
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effects. More general models are available; however, we do not believe they are useful for the
analysis of this class of fisheries experiments where no new (previously unmarked) fish are
released at dams 2, ..., k. Although this absence of any new releases simplifies the problem, it
also restricts one’s ability to use models more general than Jolly-Seber.

The assumption that parameters within a treatment group are time-specific is probably
reasonable, especially if there is some stratification or control of fish size. Capture history
could, in principle, influence parameters; however, testing could detect this effect. If such a
capture history effect is found, it can be adjusted for analytically (i.., by modeling and data
analysis). The one effect that cannot be detected or adjusted for is a release (i.e., handling)
effect at dams 2, .., k - 1. That problem, however, is not circumvented by starting with an
umbrella model more general than Jolly-Seber (see Chapter 3.8).

Two important aspects of our data analysis philosophy are as follows:

(1) Assumptions need to be stated explicitly, and tested, insofar as possible. The goodness of
fit of the Jolly-Seber model can be tested thoroughly (Pollock et al. 1985). Overall good-
ness of it tests can, and should, be partitioned into informative subcomponents. This par-
titioning is analogous to single-degree-of-freedom contrasts in the analysis of variance. It
is important to do a series of such tests focused on specific alternatives because the
omnibus (unpartitioned) goodness of fit test has low power.

(2) The analysis of release-recapture data should be thought of as model fitting, in the sense
of seeking a “good” model for the data. With knowledge of the ecology of the species of
interest as a starting point, one uses a combination of goodness of fit testing and testing
between alternative models to search for the most parsimonious model (fewest parame-
ters) that statistically fits the data and makes good ecological sense.

To facilitate this model selection process, we present (in Chapter 2.1) a menu of models
of increasing generality and several data collection protocols. Thus, one can search for a
model that fits the data. It is not possible to present analytic results for all possible models or
model sequences. Thus, it may be necessary to use a model not included here; generally, that
will require numerical analysis in which a combination of programs RELEASE and SURVIV
is used.

Our focus here is on determining the extent and nature of the treatment effect on sur-
vival rates. The extensive testing and model selection, in terms of other parameters (e.g., p, T,
or )), are essential to determine the extent and magnitude of the treatment effect and the best
way to estimate that effect.

Finally, when a model is sclected to fit the data from a given experiment, the investigator
must remember that it is just a model. That model is not reality; rather it merely provides the
best representation of the data at hand. These data may not be refined enough to demon-
strate, at statistically significant levels, minor treatment effects. For example, the major effect
may be found in Sy = ¢, /4,,; however, S; = ¢y2/4.2 may also be slightly different from one,
but this effect may be too small to detect with the available data. One would then select a
model wherein ¢y5 = ¢, (thus, S2 = 1) as the best model to describe the given data. As such,
it summarizes the statistically significant information in the data and tells what statistical infer-
ences the data justify, not necessarily what reality is.
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1.5. Treatment-Control Mortality Concepts

1.5.1. Introduction

The objective of the experiments considered here is to make inferences about the mor-
tality caused by one or more treatments. In particular, we concentrate on mortality at
hydroelectric dams caused, for example, by spillways, bypass systems, turbines, or various
deflecting screens. This type of mortality is mostly a sudden, “acute,” form of treatment effect.
However, there are other studies where treatment mortality may occur over a long period of
time, for example, when treatment is a mildly toxic substance. In this latter case the treatment
effect is referred to as “chronic.” Both types of effects sometimes occur: sudden, direct treat-
ment mortality is followed by chronic effects. Also, in principle, it is possible that a treatment
is intended to enhance survival rates. This chapter explores these and other mortality con-
cepts, and considers what mortality or survival effects can be estimated and tested for in
release-recapture studies.

The complicating factor is the presence of “natural” mortality, which can occur in the
treatment releases prior to recapture. The presence of natural mortality necessitates controls.
However, using controls does not entirely solve the problems that arise when the treatment
effect is partially or totally chronic and natural mortality forces are also present. Conceptually,
one would like to estimate “total treatment mortality” (TTM), the total mortality caused by
the treatment over a given period of time. Total treatment mortality is difficult to conceptual-
ize and impossible to estimate without bias (independent of the level of natural mortality)
unless the treatment mortality is of the acute type.

Further complications arise if the study occurs over any time period long enough to
allow possible compensatory population mortality processes. No attempt is made in the
methods here to allow for such a problem. We simply note that it is an important considera-
tion in long-term studies of chronic effects.

In general, a treatment effect may be manifested in ways other than a differential sur-
vival rate of treatment animals; however, the only effects detectable from classical release-
recapture data are altered survival rates (hence mortality effects) or effects on capture proba-
bilities. We regard the latter as nuisance effects because capture probabilities are not funda-
mental population dynamics parameters. In the actual data analysis the investigator must be
concerned with separating any treatment effects on capture probabilities from effects on sur-
vival rates. However, in this chapter our considerations are restricted to mortality effects.

Acute or chronic effects are general terms used to describe a treatment effect. When we
deal with mortality as the effect, we use the terms direct mortality (an acute effect) or indirect
mortality (a result of a chronic effect). Treatment effects are, of necessity, defined only with
respect to a control. ‘
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1.5.2. Direct versus Indirect Mortality Effects

Direct mortality is effectively instantaneous. Fish either survive the turbine passage rela-
tively unharmed, are killed outright (from a direct hit by a blade), or are fatally injured (e.g.,
by pressure-caused internal injuries). If a fish is fatally injured after passage through a tur-
bine, its ultimate death is here considered a direct mortality even if it lives for a short time
after exiting the turbine housing. All direct mortality occurs upstream from dam 2 (the first
recapture site). The important point here is that the actual cause of direct mortality is the tur-
bine, not a cause that operates on both treatment and control fish (e.g., predation or disease).

In contrast, indirect mortality would be revealed by a higher mortality rate in treatment
fish than in controls between dams 2 and 3, 3 and 4, and so forth. Moreover, the proximate
cause of that mortality would be natural. Basically, an indirect (possibly chronic) mortality
effect means that treatment animals are more susceptible than control animals to natural mor-
tality forces (mortality forces other than the treatment). This enhanced susceptibility may last
indefinitely. For such indirect mortality, competing risk theory must be used to separate the
treatment effect from the control level of natural mortality risk.

Table 1.17 gives a numerical illustration of one aspect of these mortality concepts. For
the purposes of this example, some extended notation is needed. For treatment individuals, let
$e1 = $"t0 $'11, where 1 - ¢7y is direct treatment mortality. Conditional on fish not experienc-
ing direct mortality, ¢;; is the survival rate to recapture site (or time) 2. By definition,
#’co =1, hence, ¢’¢y =¢.1. Capture methods allow us to estimate, at best, only ¢,; and ¢,;;
for some protocols, only their ratio S = ¢, /¢.; is estimable. In the case of turbine mortality,
¢ o is survival through the turbine, and ¢°;; is the survival of treatment fish between the point
where controls are released and dam 2. If all treatment mortality is direct, ¢, = ¢,q, and
S = ¢y1/der = ¢"10. However, in general, S = (¢"406¢1)/9e1, Which has the interpretation

Pr,(survives turbine )Pr,(survives to dam 2 | survives turbine )
- Pr.(survives to dam 2) |

The treatment mortality is well-defined and estimable when it is entirely a direct effect.
In the example of this case in Table 1.17, ¢y = ¢"10"n = (0.9)(0.9), and ¢,y = ¢’y = 09,
thus,

Pe1 0.81
- - - —— T 1-——‘
1-§ =1 ™ 050
=1-09
= 01=1-¢".
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Scenarios that include indirect effects are less well-defined. One possibility is to have

Y
bei

be constant (this situation will not occur in turbine studies). The indirect-only case in Table
1.17 has ¢ /e, i = 1, ..., 5 as 1, 0.99, 0.97, 0.94, and 0.90, respectively. Table 1.17 also shows
some mixed cases. Case 1 has the following estimable ratios ¢x/¢s, i = 1,2, 3, 4, 5: 0.81, 0.94,
097, 0.99, 1. For mixed-effects case 2, the estimable survival effects are 0.97, 0.95, 0.93, 0.92,
0.90.

1.5.3. Total Treatment Mortality

Generally, in Part 1, we have avoided examining subjects in detail (leaving that to later
parts). However, because we do not return elsewhere to mortality concepts, we present the
mathematical formulae here. This material is necessary only if one wants a thorough under-
standing of the limitations of release-recapture experiments in terms of which components of
treatment mortality are estimable.

The methodology used here is basically derived from the competing risk theory of sur-
vival processes, which is a coherent mathematical theory of survival (or mortality) processes
wherein the individuals are subject to several distinct forces of mortality. Much literature
exists on competing risk theory (see David and Moeschberger 1978 and Kalbfleisch

Table 1.17. - Numerical illustration of treatment ‘mortality concepts for cases of direct, indirect, and
mixed mortality; note that ¢, = ¢*o $";. Survival rates ¢ are between release and recapture sites (and
thus are estimable under certain protocols). Treatment occurs at release site 1; ¢ is the direct effect.

Possible treatment survival rate

Control
Survival survival Direct Mixed Mixed Indirect
rate rate only case 1 case 2 only
20 1.00 0.90 0.900 0.980 1.000
1 0.90 0.90 0.810 0.880 0.900
=000 0.90 0.81 0.729 0.873 0.900
& 0.85 0.85 0.800 0.807 0.842
'8 0.95 0.95 0.922 0.888 0.922
? 0.78 0.78 0.772 0.718 0.733

& 0.93 0.93 0.930 0.837 0.837
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and Prentice 1980; also, Anderson and Burnham 1976 provided an ecological application of
competing risk theory, and Fletcher 1985 used a competing-risks approach in an analysis of
fisheries diversion experiments).

Definitions of some notation used here follow.

#(0, d) the survival rate of treatment fish from the release point to down-
stream distance d (results here are also interpretable with d as time).

¢e(e, d) the survival rate of control fish from their release point (¢) to down-
stream distance (location) d; for convenience, define ¢,(0,€) = 1.

he(x) the instantancous mortality rate (as a function of location, x) for the
treatment fish.

h.(x) the instantaneous mortality rate for the control fish.

A(x)=hy(x) - h.(x) the instantaneous treatment mortality effect; this is a fundamental
way of conceptualizing the effect of the treatment.

It is assumed that controls are released just downstream from dam 1 at location . By defining
¢.(0,¢) = 1, the notation ¢.(0,d) becomes equivalent to ¢.(¢,d). Direct and indirect instan-
taneous treatment mortality effects are represented, respectively, as A(x) = kg (x) for 0<x <e
and A(x) = hy(x) - B (x), e<x.

Finite survival rates can be expressed in terms of the above instantaneous rates:
4
40, d) = 40, &) (L ., )5

¢c(€, d) = e"f‘dhc(y)d-'/.

The objective here is to express mortality in the treatment cohort as the sum of two parts -
mortality that is attributed to the treatment, and mortality that is natural (“natural” mortality
being defined here as mortality from any risk factor affecting the controls):

d
1-4,(0,d) = 1-¢h ™% _ a1 (0, 2y + NM(0, ),

where

TM (0, d) = [ AG)eh 10+ kbldrgy,

NM (0, a) = j;) dhc(x)e'-ga (Aly) + helo)ldy 7,
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Here, TM denotes treatment mortality and NM denotes natural mortality. The quantity
denoted TM (0, d) is the total mortality over the distance interval 0 to d, that is validly attri-
buted to (“caused” by) the treatment. This TM (0, d) appears to be complex, and it cannot, in
general, be simplified. Worse yet, it cannot be estimated without bias except in special cases.

Let there be a short interval (0, €) wherein all direct mortality occurs (or is caused). The
turbine experiments fit this model. Then TM (0, d) can be partitioned into direct and indirect
treatment mortality, assuming that no indirect treatment mortality occurs in 0 to . The result
is

MO, d) = 1- (0, €) + (0, €) [ AG) e [[18) +helo)lds g,

Thus, TM (0, d) is expressed as equal to direct treatment mortality 1 - ¢(0, £) plus indirect
treatment mortality over the distance (or time) ¢ to d.

If treatment effect eventually wears off entirely (as regards mortality), one can conceptu-
alize a distance d« beyond which A(d) = 0. If the notation is extended for finite survival rates,
¢(d+,d) = ¢.(d+, d) for all d > d+. Conversely, ¢(0, d) < ¢.(0, d) for all d < d+ (in turbine
mortality experiments we expect ¢, < ¢,). If the treatment mortality effect never entirely van-
ishes, we take d+ as infinity. The total treatment mortality (TTM) can now be defined as
TM(0,d+). Eventually all the treatment animals die; TTM is the proportion of that 100% mor-
tality that may validly be attributed to the treatment.

Inasmuch as TTM is an unambiguous measure of treatment effect, we would like to be
able to estimate it. This estimation can be done without bias only when d+ = &, that is, when
all the treatment mortality is direct. Then ¢y; = ¢(0, €)¢.1, so that the parameter we denote
as S = ¢y1 /4.1 satisfies TTM = 1 - S only in this special case. In general, for results over (0,d)

S = 4,0, &) e A0

- whereas
1-TM = $(0, €) [1 -J “AG) AR "‘(”)]d“dx] .
Finally, from
1- e'fsz(z)dy = J; ! A(x)e'j:x ANy gy > "; ¢ A(x)e'f (&) + by g
we derive

1-S>TM ;
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hence, for d > d«, 1- S > TTM, with equality if and only if d+ = &.

We add some interpretation of the above. If d+ lies above the first recapture dam, infor-
mation on the treatment effect, in regard to survival, is entirely contained in ¢, and ¢,;, and
their ratio is one valid measure of the treatment effect. If, however, there are indirect effects,
1 - S exceeds the total mortality that should be attributed to the treatment effect. For fish
passing through turbines, most of the effect will be direct mortality, and any indirect effects are
likely to disappear at or before the next downstream dam. Consequently, for turbine (or
bypass or spillway) experiments, the interpretation of 1 - (¢, /¢.1) as TTM should be a reason-
able approximation.

The various equations above provide a basis for investigating the matter further. One
can specify forms for 4.(y) and k,(y), or A(y), and the value of d+ and numerically compute S,
TTM, and NM(0, d+). This computation allows comparison of 1 - § with TTM over a wide
range of conditions. We consider here a simple case which gives analytic formulae. Assume
that k. (y) = h. is constant over ¢ to d+ and then replace A(y) over this interval by its average
value (say A) and hence define v = A/h.. For d > ds, this case leads to the formula

A

1-TIM _, v |,. |
#(0, €) 1+q (0, ¢)

and
S = $(0, )e 494,

or equivalently for S,
-5 = (0, 9)lge 0, A",

where 1 - ¢,(0,d) is control mortality.

The reader can compute results with these formula for d > d+ (modifications are needed
to examine results over d <d+«). We have calculated representative results. For example, if
direct treatment mortality is 0.1 [¢(0, €) = 0.9], control mortality is 0.15 [i.e., ,(0 d) = 0.85],
and indirect treatment mortality is 0.02, then TTM = 0.12, and 1 - § = 0.12167. Consideration
of the theory here and extensive tabulation of results with the above simple formulae lead to
some general conclusions:

(1) As d increases (beyond d+), the error in using 1 - S to estimate TTM increases (when
natural mortality is occurring in the river reach d+ to d). Consequently, recapturing
should occur as close to d+ as possible.

(2) For fixed d > d, as the control mortality increases [¢,(0, d) decreasing], 1 - S becomes a
progressively poorer approximation of TTM.
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(3) If control mortality (over 0 to d) is <0.15, the ratio (1 - S)/TTM is generally <1.1
irrespective of how much of TTM is direct mortality. In fact, if there is direct mortality,
(1-S5)/TTM is likely to be <1.05.

(4) If most treatment mortality is direct (> 70% TTM), the ratio (1 - S)/TTM appears to be
approximately 1.05 at any level of control mortality or TTM.

For turbine mortality studies at hydroelectric dams, we believe that 1 - S is a good
approximation of TTM. Viewed alternatively, the fact that 1 - § may not exactly equal TTM is
of negligible concern in such large-scale studies compared with the size of se(S) and the many
practical problems that constitute possible sources of serious bias in S.

1.5.4. Problems with Defining a Treatment Effect on Survival

In this section we pursue further the question of what reasonably constitutes the measur-
able treatment effect in release-resampling experiments. At best, we can only estimate
separate survivals ¢ and ¢,; between recapture dams i = 1, .., k - 2. Thus, we can estimate
quantities like ¢,; - ¢y or ¢ /¢.1 as our measures (indices) of treatment effect. If there is
indirect mortality, we cannot separate it from direct mortality. It is, however, possible to test
for the existence and extent of the treatment effect under the complete capture history proto-
col or under the scheme A partial capture history protocol.

In Section 1.5.3 we showed that 1 - S is often a good approximation of TTM; if there is
no indirect mortality, S is the best measure of the treatment effect. The primary alternative to
S is the difference ¢, - ¢,. This difference is affected by the choice of d, whereas the ratio of
#:/¢. stabilizes as d increases. To clarify this point, we expand our notation and show the
dependence of S on distance: S(0, d) = ¢(0, d)/4.(0, d). Of course, we can estimate this
ratio at distances ds, ..., di.o corresponding to recapture dams (but only for certain protocols).
As d increases toward d:, S(0,d) changes; however, for all d >ds,
#:(0, d)/4.(0, d) = S(0, d+). This stabilization of S(0, d) contrasts with the difference
(0, d) - ¢,(0, d), which goes to zero as d increases; it is a valid measure of effect, and many
~ of the tests presented here are actually based on the difference. However, one should be
aware of the contrasting properties of the ratio versus the difference of survival rates.

A further reason for our emphasis on S as the measure of treatment effect is that only
the ratio S is estimable as a convenient measure of treatment effect for the first capture history
and unknown capture history protocols. Only for complete capture history and partial capture
history protocols can one separately estimate, at least, ¢, and ¢,;.

Although we have focused here on studies of fish passing through hydroelectric dams,
the nature of the treatment effect could be quite different in other treatment-control release-
recapture (or capture-recapture) studies. The anticipated pattern of mortality in any study
significantly affects the types of models and the strategy of testing one should use. We have
concentrated here on effects that are anticipated to be initially large and then vanish. Hence,
we assume most of the effect is an acute, initial mortality. If any indirect effects vanish by or
before dam 2 (thus, d» <d;), one can characterize the treatment effect with the single
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parameter S(0, d+) and estimate this parameter with the equation S = ¢; /¢.;. If an indirect
effect persists beyond dam 2, then one needs to extend our characterization of the “treatment
effect.”

The preferred approach would be to compare the entire set of survival curves for treat-
ment versus control cohorts. Thus, one compares ¢(0, d) to ¢.(0, d) as functions of d > 0.
The comparison(s) might be reduced to looking at functions of these, such as average life time
(after release). Such simple comparisons are not possible with release-recapture data because
only the discrete survival rates ¢y, ¢, i = 1, ..., k - 2 can be estimated. Also, these estimators
are subject to substantial sampling variances and covariances.

In this monograph, we emphasize intensive testing for differences between these sur-
vivals to identify the extent and size of the treatment effect. These “generic” tests can be
improved if one has prior knowledge (or beliefs) about the treatment effects. In particular, if
effects are chronic with no direct effect, one should consider imposing a parametric model on
¢. The survival curve might be exponential, Weibull, or logistic; e.g., $(0,d) = exp[-(d/)®].
One then must assess the fit of this model (separately for treatment and control); if it is satis-
factory, the treatment effect is reflected by differences in the parameters o and 8 between
treatments and controls.

In studies with long-term chronic effects, one hopes that the effect is monotonic because
it is then not difficult to hypothesize a useful parameter to reflect the treatment effect. Mono-
tonic means that A(d) never changes sign. In this case some weighted combination of the ¢;s
should be considered as the basis of an efficient test for treatment effect. For example,

k-2 [di + diy

¢ = 2—31 ) ] #(ds, d; 1)

or

k-2
$= ;1 l¢(du di+1) ’

where d; is the time (or location) of the ith release-recapture with respect to d; = 0, and
#(d;, d; 1) = ¢; for treatment or control. One then gets the estimate of ¢ for both treatments
and controls and tests for a significant difference.

It is clear to us that chronic treatment effects substantially increase difficulties associated
with capture studies. Problems worsen as more of the TTM becomes indirect and as the time
duration of the study lengthens (i.e., years rather than weeks or months). In fact, simple
capture-recapture studies are not suitable as a basis for a serious study of long-term chronic
mortality effects. As just one illustration of difficulties, we note the following, using the equa-
tions at the end of Section 1.5.3. Let the control mortality be 0.7 and the TTM be 0.3, with no
direct mortality. Then, for d > d+ where ¢, = (0, d) and 4, = ¢.(0, d), 1 - S = 0.48. In this
situation, tests for a treatment effect will be powerful, but there is no way to obtain a rellablc
estimate of TTM without some type of additional information.



